Applied Water Science (v.8, #1)

Hydrogeochemical investigation of groundwater resources of Kashipur Block, Purulia district, West Bengal has been carried out to assess the water quality for domestic and irrigation uses. Twenty groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, hardness, major anions (CO3 2−, HCO3 , Cl, SO4 2−, F) and cations (Ca2+, Mg2+, Fe2+, Na+, K+). Study results reveal that the groundwater of the area is mostly acidic in nature. The trend amongst average ionic concentrations of cations and anions is Mg2+ > Ca2+ > Na+ > Fe2+ > K+ and Cl > HCO3  > CO3 2− > SO4 2− > F respectively during the post monsoon whereas the trend for cations and anions are Mg2+ > Ca2+> Na+ > K+ > Fe and Cl > HCO3  > SO4 2− > F > CO3 in pre monsoon session, respectively. To explore the ionic toxicity of the study area, the derived parameters like sodium adsorption ratio, soluble sodium percentage, residual sodium carbonate, magnesium adsorption ratio, Kelly’s ratio and permeability index were calculated. The hydro geochemical data suggest that weathering of rock forming minerals along with secondary contributions from agricultural and anthropogenic sources are mainly controlling the groundwater composition of Kashipur Block, Purulia District. According to piper diagram, water samples of most of the area of the block are fresh water and in some areas sulphate rich throughout the year. All samples are distributed to central rock dominance category. Groundwater chemistry of this block is mainly controlled by the interaction existing between the litho units and the percolating water into the subsurface domain. However, the groundwater quality and suitability of this study area can be termed as good to moderate with a few exceptions which have been encountered on a local scale.
Keywords: Hydrochemistry; Irrigation suitability; Drinking suitability; Kashipur Block; Purulia district

Quality of groundwater is assessed from a part of Prakasam district, Andhra Pradesh, India. Groundwater samples collected from thirty locations from the study area were analysed for pH, electrical conductivity (EC), total dissolved solids (TDS), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate ($$ { ext{HCO}}_{3}^{ - } $$ HCO3- ), chloride (Cl), sulphate ($$ { ext{SO}}_{4}^{2 - } $$ SO42- ), nitrate ($$ { ext{NO}}_{3}^{ - } $$ NO3- ) and fluoride (F). The results of the chemical analysis indicate that the groundwater is alkaline in nature and are mainly characterized by Na+–$$ { ext{HCO}}_{3}^{ - } $$ HCO3- and Na+–Cl facies. Groundwater chemistry reflects the dominance of rock weathering and is subsequently modified by human activities, which are supported by genetic geochemical evolution and hydrogeochemical relations. Further, the chemical parameters (pH, TDS, Ca2+, Mg2+, Na+, $$ { ext{HCO}}_{3}^{ - } $$ HCO3- , Cl, $$ { ext{SO}}_{4}^{2 - } $$ SO42- , $$ { ext{NO}}_{3}^{ - } $$ NO3- and F) were compared with the drinking water quality standards. The sodium adsorption ratio, percent sodium, permeability index, residual sodium carbonate, magnesium ratio and Kelly’s ratio were computed and USSL, Wilcox and Doneen’s diagrams were also used for evaluation of groundwater quality for irrigation. For industrial purpose, the pH, TDS, $$ { ext{HCO}}_{3}^{ - } $$ HCO3- , Cl and $$ { ext{SO}}_{4}^{2 - } $$ SO42- were used to assess the impact of incrustation and corrosion activities on metal surfaces. As a whole, it is observed that the groundwater quality is not suitable for drinking, irrigation and industrial purposes due to one or more chemical parameters exceeding their standard limits. Therefore, groundwater management measures were suggested to improve the water quality.
Keywords: Groundwater quality; Drinking purpose; Irrigation use; Industrial purpose

This study has investigated the adsorption of Rhodamine B (Rh-B) dye on novel biosynthesized silver nanoparticles (AgNPs) from cobweb. The effects of contact time, initial pH, initial dye concentration, adsorbent dosage and temperature were studied on the removal of Rh-B and they significantly affected its uptake. Adsorption isotherms were evaluated using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The adsorption process was best described by Langmuir isotherm with R 2 of 0.9901, indicating monolayer adsorption. The maximum adsorption capacity (q max) of 59.85 mg/g showed that it has relatively high performance, while adsorption intensity showed a favourable adsorption process. Pseudo-second-order kinetics fitted best the rate of adsorption and intra-particle diffusion revealed both surface adsorption and intra-particle diffusion-controlled adsorption process. Negative values of thermodynamic parameters (∆H°, ∆S° and ∆G°) indicated an exothermic and spontaneous adsorption process. The mean sorption energy (E) and activation energy (E a) suggested the uptake of Rh-B onto AgNPs was chemical in nature (chemosorption).
Keywords: Biosynthesized AgNPs; Chemosorption; Adsorption isotherm; pH point of zero charge; Spontaneity of adsorption; Wastewater

The variation of groundwater quality across different regions is of great importance in the study of groundwater so as to ascertain the sources of contaminants to available water sources. Geochemical assessment of groundwater samples from hand-dug wells were done within the vicinity of Ajakanga dumpsite, Ibadan, Southwestern, Nigeria, with the aim of assessing their suitability for domestic and irrigation purposes. Ten groundwater samples were collected both in dry and wet seasons for analysis of physicochemical parameters such as: pH, EC, TDS, Na+, K+, Ca2+, Mg2+, $$ ext{HCO}_{3}^{ - }$$ HCO3- Cl, $$ ext{SO}_{4}^{2 - }$$ SO42- , $$ ext{NO}_{3}^{2 - }$$ NO32- principal component analysis (PCA) and cluster analysis (CA) were used to determine probable sources of groundwater contamination. The results of the analyses showed the groundwater samples to be within permissible limits of WHO/NSDWQ, while elevated values of concentrations of most analyzed chemical constituents in water samples were noticed in S1 and S10 due to their nearness to the dumpsite and agricultural overflow, respectively. Groundwater in the study area is of hard, fresh and alkaline nature. There are very strong associations between EC and TDS, $$ ext{HCO}_{3}^{ - }$$ HCO3- and $$ ext{CO}_{3}^{2 - }$$ CO32- in both seasons. PCA identified five and three major factors accounting for 95.7 and 88.7% of total variation in water quality for dry and wet seasons, respectively. PCA also identified factors influencing water quality as those probably related to mineral dissolution, groundwater–rock interaction, weathering process and anthropogenic activities from the dumpsite. Results of CA show groups based on similar water quality characteristics and on the extent of proximity to the dumpsite. Assessment for irrigation purpose showed that most of the water samples were suitable for agricultural purpose except in a few locations.
Keywords: Physicochemical; Dumpsite; Freshwater; Anthropogenic; PCA; CA

The adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II), ions from aqueous solutions by Cucumis melo peel-activated carbon was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto CMAC was analyzed with Elovich, intra-particle diffusion rate equations and pseudo-first-order model. The rate constant of Elovich and intra-particle diffusion on CMAC increased in the sequence of Cr(VI) > Ni(II) > Cd(II) > Pb(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo-first-order model compared to the second-order Lagergren’s model with R 2 > 0.957. The maximum adsorption of metal ions onto the CMAC was found to be 97.95% for Chromium(VI), 98.78% for Ni(II), 98.55% for Pb(II) and 97.96% for Cd(II) at CMAC dose of 250 mg. The adsorption capacities followed the sequence Ni(II) ≈ Pb(II) > Cr(VI) ≈ Cd(II) and Ni(II) > Pb(II) > Cd(II) > Cr(VI). The optimum adsorption conditions selected were adsorbent dosage of 250 mg, pH of 3.0 for Cr(VI) and 6.0 for Ni(II), Cd(II) and Pb(II), adsorption concentration of 250 mg/L and contact time of 180.
Keywords: Cucumis melo peel; Heavy metals; Adsorption; Chromium(VI); Lead(II); Cadmium(II); Nickel(II)

The present study attempts to understand the form and geomorphic/hydrologic processes of the 20 watersheds of the Pachamalai hills and its adjoinings located in Tamil Nadu State of southern India from the analysis of its drainage morphometric characteristics. Survey of India’s topographic sheets of 1:50,000 is the data source from which stream networks and watersheds of the study area were demarcated followed by the analysis of their morphometric characteristics using ArcGIS software. The results of the analysis formed the basis for deducing the form and processes of the watersheds of the study area. The form of the watersheds inferred from the analysis includes shape, length, slope steepness and length, degree of branching of streams, dissection and elongation of watersheds. The geomorphic/hydrologic processes inferred include denudation rate, potential energy, intensity of erosion, mean annual run off, mean discharge, discharge rate, rock resistivity and infiltration potential, amount of sediment transported, mean annual rainfall, rainfall intensity, lagtime, flash flood potential, flood discharge per unit area, sediment yield and speed of the water flow in the streams. The understanding of variations of form and processes mentioned can be used towards prioritizing the watersheds for development, management and conservation planning.
Keywords: Drainage morphometry; Pachamalai hills; Form and processes

Calibration of hydraulic model of a water distribution network is required to match the model results of flows and pressures with those obtained in the field. This is a challenging task considering the involvement of a large number of parameters. Having more precise data helps in reducing time and results in better calibration as shown herein with a case study of one hydraulic zone served from the Ramnagar Ground Service Reservoir in Nagpur City. Flow and pressure values for the entire day were obtained through data loggers. Network details regarding pipe lengths, diameters, installation year and material were obtained with the largest possible accuracy. Locations of consumers on the network were noted and average nodal consumptions were obtained from the billing records. The non-revenue water losses were uniformly allocated to all junctions. Valve positions and their operating status were noted from the field and used. The pipe roughness coefficients were adjusted to match the model values with field values of pressures at observation nodes by minimizing the sum of square of difference between them. This paper aims at describing the entire process from collection of the required data to the calibration of the network.
Keywords: Calibration; Data logger; Hydraulic model; Network simulation; Water distribution network

Assessment of hydrogeochemical status of groundwater in a coastal region of Southeast coast of India by S. Chidambaram; J. Sarathidasan; K. Srinivasamoorthy; C. Thivya; R. Thilagavathi; M. V. Prasanna; C. Singaraja; M. Nepolian (1-14).
A study was conducted in a coastal region of Cuddalore district of Tamil Nadu, India, to identify the hydrogeochemical processes controlling the groundwater chemistry. The major geological units of the study area are sandstone, clay, alluvium, and laterite soils of Tertiary and Quaternary age. A total of 64 groundwater samples were measured for major ions and stable isotopes. Higher electrical conductivity values indicate the poor quality groundwater along the coastal region. Saline water intrusion mainly affects the hydrochemical composition of the aquifer water reflected by Na–Cl-type waters. Cl/(Cl + HCO3 ) ratio also indicates the mixing of fresh groundwater with saline water. The results of δD and δ18O analyses show that isotopic compositions of groundwater ranges from − 7.7 to − 2.1‰ for δ18O and from − 55.6 to − 18.5‰ for δD. Correlation and factor analysis were carried out to find the association of ions and to determine the major factors controlling the groundwater chemistry of the region. The study indicates that ion exchange, weathering, salt water intrusion along the coast, and anthropogenic impacts are the major controlling factors for the groundwater chemistry of the region.
Keywords: Coastal aquifers; Salt water intrusion; Weathering; Isotopes; Cuddalore

Coastal surface water suitability analysis for irrigation in Bangladesh by Mohammad Hossain Mahtab; Anwar Zahid (1-12).
Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October–December) and in dry period (February–April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.
Keywords: Coastal zone; Crop yields; Permeability; Salinity; Sodium

In this research, the removal of 2,4 dinitrophenol, 2 nitrophenol and 4 nitrophenol from aqueous solution using char ash from animal bones was investigated using batch technique. Three 2-parameter isotherms (Freundlich, Langmuir, and Temkin) were applied to analyze the experimental data. Both linear and nonlinear regression analyses were performed for these models to estimate the isotherm parameters. Three 3-parameter isotherms (Redlich-Peterson, Sips, Toth) were also tested. Moreover, the kinetic data were tested using pseudo-first order, pseudo-second order, Elovich, Intraparticle diffusion and Boyd methods. Langmuir adsorption isotherm provided the best fit for the experimental data indicating monolayer adsorption. The maximum adsorption capacity was 8.624, 7.55, 7.384 mg/g for 2 nitrophenol, 2,4 dinitrophenol, and 4 nitrophenol, respectively. The experimental data fitted well to pseudo-second order model suggested a chemical nature of the adsorption process. The R 2 values for this model were 0.973 up to 0.999. This result with supported by the Temkin model indicating heat of adsorption to be greater than 10 kJ/mol. The rate controlling step was intraparticle diffusion for 2 nitrophenol, and a combination of intraparticle diffusion and film diffusion for the other two phenols. The pH and temperature of solution were found to have a considerable effect, and the temperature indicated the exothermic nature of the adsorption process. The highest adsorption capacity was obtained at pH 9 and 25 °C.
Keywords: Adsorption; Char; Isotherms; Kinetic models; Phenols; Wastewater treatment

Quality assessment of commercially supplied drinking jar water in Chittagong City, Bangladesh by Sohana Akter Mina; Lolo Wal Marzan; Tasrin Sultana; Yasmin Akter (1-8).
Chittagong is the second most populated city in Bangladesh where drinking water is supplied using small jar. Water quality is an important concern for the consumers and, therefore, the present study was done by collecting 38 drinking jar water samples from Chittagong City, Bangladesh to determine the microbial contamination and physiochemical properties. Molecular study was done by the PCR amplification of 16SrDNA, LacZ and uidA gene for the identification of bacteria, coliform and fecal coliform. TVC, MPN and different biochemical test were done for enumeration and identification. TDS, pH, and metals (Fe, As, Pb and Cr) concentration were also measured. No heavy metal (As, Pb and Cr) was found in any of the water samples but Fe was detected in low concentrations (0.02–0.05 mg/l). TDS and pH level were normal in all samples. But microbial contaminations were (60.53 and 50%) recorded in molecular and biochemical test, respectively. The range of total bacterial count was (1.5 × 102–1.6 × 104) cfu/ml. The total coliform count (TCCm) was recorded (14–40) in 100 ml of water samples. The presence of total coliform and fecal coliform was 26.32 and 18.42%, respectively, in PCR analysis but in biochemical test those were 18.42 and 15.78%, respectively. A total of 11 bacterial species: Enterobacter aerogenes, Escherrichia coli, Aeromonas, Bacillus sp., Cardiobacterium, Corynebacterium, Clostridium, Klebsiella sp., Lactobacillus, Micrococcus sp., Pseudomonas sp. were found. This study indicates that some of the drinking jar water samples were of poor quality which may increase the risk of water-borne disease. Hence, the producer of drinking jar water has to implement necessary quality control steps.
Keywords: Drinking water; Coliforms; Bacteria

Demand of groundwater resources has increased manifold with population expansion as well as with the advent of modern civilization. Assessment, planning and management of groundwater resource are becoming crucial and extremely urgent in recent time. The study area belongs to Kashipur block, Purulia district, West Bengal. The area is characterized with dry climate and hard rock terrain. The objective of this study is to delineate groundwater potential zone for the assessment of groundwater availability using remote sensing, GIS and MCA techniques. Different thematic layers such as hydrogeomorphology, slope and lineament density maps have been transformed to raster data in TNT mips pro2012. To assign weights and ranks to different input factor maps, multi-influencing factor (MIF) technique has been used. The weights assigned to each factor have been computed statistically. Weighted index overlay modeling technique was used to develop a groundwater potential zone map with three weighted and scored parameters. Finally, the study area has been categorized into four distinct groundwater potential zones—excellent 1.5% (6.45 sq. km), good 53% (227.9 sq. km), moderate 45% (193.5 sq. km.) and poor ~ 0.5% (2.15 sq. km). The outcome of the present study will help local authorities, researchers, decision makers and planners in formulating proper planning and management of groundwater resources in different hydrogeological situations.
Keywords: Remote sensing and GIS analysis; Multi-criteria analysis (MCA); Weighted index overlay (WIOA); Groundwater potential zone; Kashipur block; Purulia district

The tribulations of water quality have become more serious than the quantity, as the environmental evils are getting more severe day by day in different parts of the world. Large number of components like soil, geology, sewage disposal, effluents and other environmental conditions in which the water tends to reside or move and interact with ground and biological characteristics, greatly persuade the groundwater quality. Therefore, hydrochemical study has been carried out graphically and spatially in GIS environment in part of Bundelkhand Massif. The hydrochemical study exposes the water quality by measuring the concentration of parameters and comparing them with the drinking water and irrigation standards. Groundwater samples have been collected and analysed for physiochemical characteristics in order to understand the hydrochemistry of the water. The results revealed that ground water is alkaline in nature and total hardness observed in all samples falls under moderately hard to very hard category. At some places higher concentration of Cl could be dangerous from health point of view. Major hydrochemical facies were identified using Piper Trilinear diagram and Durov diagrams, etc. Analysis of different determinations such as sodium adsorption ratio, residual sodium carbonate and per cent sodium revealed that most of the samples are unsuitable for irrigation. It was also observed that the quality of groundwater was not suitable for drinking purpose in industrial and irrigation area. In the area, few sampling sites showed unsuitability because of influences of urban and industrial waste discharge, aquifer material mineralogy, other anthropogenic activities and increased human interventions.
Keywords: Groundwater quality; GIS; Spatial distribution; Hydrochemical; Irrigation

Decolorization of turbid sugar juice from sugar factory using waste powdered carbon by Hind Aljohani; Youssef Ahmed; Ola El-Shafey; Shaymaa El-Shafey; Rasha Fouad; Kamel Shoueir (1-10).
Waste management of powdered activated carbon from cyclone of some sugar factories was used for decolorization of sugar mud juice (SMJ) in this study. The presence of powdered activated carbon waste (PACW) was admitted again for their use in SMJ decolorization. The determined specific surface area are typically S BET = 613.887 m2/g and the pore distribution lies in mesoporous domain. Color removal (CR%) and decolorization capacity (DC) of the characterized PACW are similar to those of decolorants used at this time for sugar refining. The CR% with PACW reached 81.03% at pH7.0 and dosed in the amount 0.5 g/50 ml of SMJ. There are two acceptable mechanisms illustrates the attachments between phenols and carboxylate ions. In this paper, we put a simple and rapid dark liquid decolorization by controlling rejected carbon waste, which will be useful for treatment of dark liquid sugar. Schematic representation of the simple pathway of SMJ decolorization
Keywords: Carbon; Waste; CR%; DC; SMJ decolorization

Adsorptive removal of bisphenol A using synthesized magnetite nanoparticles by B. O. Orimolade; F. A. Adekola; G. B. Adebayo (1-8).
Bisphenol A (BPA) is an organic compound which is often used as plasticizer and has been reported to be hazardous to man. In this research the efficiency of removal of BPA from water by magnetite through adsorption process was studied. The magnetite was synthesized using reverse co-precipitation method and fully characterized. Various physicochemical parameters affecting the adsorption of BPA using magnetite were studied as well. The optimum time for the adsorption process was found to be 60 min at pH of 6, adsorbent dose of 0.2 g and 50 ppm of BPA. The adsorption data were fitted by the Langmuir adsorption isotherm best with a regression value of 0.957. The R L value was 0.179 which revealed that the process is favorable. The Freundlich constant n which was 1.901 also revealed that the adsorption is normal and favorable. The data were in agreement with the pseudo-second-order kinetics with regression value of 0.98. From the thermodynamic studies, the process was found to be exothermic and the Gibb’s free energy value which was negative showed that the adsorption was spontaneous. The synthesized magnetite therefore offers great potential for the remediation of bisphenol A-contaminated media.
Keywords: Bisphenol A; Magnetite; Adsorption; Kinetics; Isotherms

The assessment of bore-hole water quality of Kakamega County, Kenya by Adika A. Christine; Joshua K. Kibet; Ambsrose K. Kiprop; Munyendo L. Were (1-8).
Numerous deleterious impacts of anthropogenic activities on water quality are typically observed in areas bursting with mineral exploitation, agricultural activities, and industrial processes. Therefore, this contribution details the water quality and water origin in selected hand-dug wells of one the most prominent mining areas in Kenya (Kakamega County). The toxicological impacts of drinking water from a mining site may include cancer and genetic aberrations largely because of the toxic effects of waterborne metals including Hg and As. Accordingly, this study focuses primarily on the investigation of heavy metals, essential elements such as Na and K. Heavy metals and essential elements were determined using spectroscopic and titrimetric techniques. The study revealed that mercury (Hg) concentration ranged between 0.00256 and 0.0611 ± 0.00005 mg/L while arsenic (As) concentration ranged from 0.0103 to 0.0119 ± 0.00005 mg/L. The concentration of potassium ranged from 2.53 to 4.08 ± 0.15 mg/L while that of sodium varied from 6.74 to 9.260 ± 0.2 mg/L. Although the concentration of cadmium was lower than that recommended by W.H.O, the concentrations of Hg, Pb, and As in Kakamega waters were higher than the internationally accepted levels. The generally high level of heavy metals in Kakamega bore-hole waters is, therefore, a public health concern that needs immediate intervention.
Keywords: Hand-dug wells; Heavy metals; Toxicity; Water quality

The influence of lineaments, lineament intersections and geology on the groundwater yield of the basement terrain of Ondo State was investigated using optical remote sensing data, Aster DEM, geology, and borehole yield data. Landsat-7 ETM+ and Aster DEM were processed to generate composite lineament map. The study area was traversed by five (5) main lineament populations trending N–S, NE–SW, E–W, ENE–WSW, NNW–SSE. Boreholes sited on lineament exhibited a yield range of between 0.8 and 1.28 l/s with an average yield of 1.04 l/s. Boreholes sited close to lineament gave groundwater yield values of between 0.5 and 1.28 l/s and an average yield of 1 l/s, while boreholes located outside lineament gave groundwater yield range of between 0.2 and 1.26 l/s with an average yield of 0.98 l/s. The investigation of the hydrogeological characteristics of the lithologies by superimposing the yield data showed average yield of 0.98 l/s for migmatite gneiss biotite granite undifferentiated (M), 1.01 l/s for porphyritic granite (OGp), 1.03 l/s for medium- to coarse-grained (OGe), 1.17 l/s for pelitic schist undifferentiated (Su), 1.24 l/s for quartz schist and quartzite (Eq), 1.12 l/s for older granite undifferentiated (OGu), 0.5 l/s for slightly migmatised medium-grained granite-gneiss (gg) and 1.23 l/s for fine-grained flaggy quartzite and schists (Sf). The study concluded that borehole data located on or near lineaments or at intersection of lineaments gave higher yields more than those located before lineaments or outside lineaments, while quartz schist and quartzite exhibited the highest average groundwater yield of all the lithological units.
Keywords: Lineament; Lineament intersection; Lithology; Groundwater yield; Crystalline basement complex

Impact of climate change on water resources in Jordan: a case study of Azraq basin by Ghada N. Al Qatarneh; Bashar Al Smadi; Kamel Al-Zboon; Khaldoun M. Shatanawi (1-14).
Azraq basin is one of the most important groundwater basins in Jordan. Trend analysis using RClimDex for six rainfall stations and two metrological stations was performed to detect and predict climate change impacts on the Azraq basin until the year 2030. Three absolute homogeneity tests were used to detect any variation in the data time series. The results showed that monthly max value of daily mean temp, tropical night, monthly maximum value of daily maximum temp, monthly maximum value of daily minimum temp and cool days were found to be statistically significant climate change indices. The trend of the max temperature during July is significant, while insignificant trend for the minimum temperature in the same month was noticed. The frequency of days in which the maximum temperature exceeded 38 °C increased and there was increase in the minimum temperature count of values that are exceeding 20 °C in the last 46 years. Regarding the rainfall, there is no change in total annual precipitation over the study area during the studied period. The results of simulating climate change impact into the evaporation showed expected increase by 4.74 and 5.32% for Al Butum and El Janab wadis, respectively, during the period of 2013–2030. Streamflow analysis showed slight decrease by 1.51 and 1.02% for both wadis, respectively.
Keywords: Climate change; Azraq basin; Rclimdex; SWAT model; Indices

Acid Green 1 removal from wastewater by layered double hydroxides by El Hassan Elkhattabi; Mohamed Lakraimi; Moha Berraho; Ahmed Legrouri; Radouan Hammal; Layla El Gaini (1-11).
The paper presents the removal of Acid Green 1 (AG1) from aqueous solutions by [Zn–Al–Cl]-layered double hydroxides (LDHs). The LDH was prepared by coprecipitation at constant pH. The affinity of this material for AG1 was studied as a function of contact time, pH of the solution, LDH dose and AG1/LDH mass ratio. It was found that 32 h are enough to reach the equilibrium with a maximum retention at pH 8 for an LDH dose of 100 mg and with an AG1/LDH mass ratio higher than 2. The adsorption isotherm is of L-type, as described by the Langmuir model. The results demonstrate that AG1 retention on LDHs occurs by adsorption on external surface when AG1/LDH mass ratio is equal or lower than 2 and by both adsorption and interlayer ion exchange for ratios higher than 2. A mechanism for the AG1 removal has been confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric–differential thermal analyses and scanning electron microscopy.
Keywords: Layered double hydroxides; Acid Green 1; Dye; Adsorption; Anion exchange

Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.
Keywords: Multivariate statistical techniques; Groundwater quality; Cluster analysis; Discriminant analysis; Principal component analysis/factor analysis

Coagulation is a primary and cost effective process in water treatment plants. Under optimum conditions, not only it effectively removes turbidity but also results in reduced sludge volume and subsequently minimizes sludge management costs. Highly turbid water from streams, canals, rivers and rain run offs was run through jar test for turbidity removal. The brown water with 250NTU turbidity when coagulated with alum and assorted coagulants proved that maximum turbidity removal was witnessed using alum dose of 0.25 g/l at ph 6 with a sedimentation time of 30 min.
Keywords: Coagulants; Turbidity; Muddy water; Alum

Preparation of microspheric Fe(III)-ion imprinted polymer for selective solid phase extraction by Behisht Ara; Mian Muhammad; Muhammad Salman; Raees Ahmad; Noor Islam; Tanveer ul Haq Zia (1-14).
In this research work, an Fe(III)-IIP was prepared using methacrylic acid as monomer, divinylbenzene as cross-linker, azobisisobutyronitrile as initiator. The ion imprinted polymer was functionalized with Fe(III)8-hydroxy quinolone complex under thermal conditions by copolymerization with the monomer and the cross-linker. The prepared Fe(III)-ion imprinted polymer (IIP) and non-ion imprinted polymer (Non-IIP) were characterized with fourier transform-infrared spectroscopy, scanning electron microscopic analysis and thermal gravimetric analysis. The polymer showed a good stability to thermal analysis up to a temperature of 500 °C. The size of the polymer obtained was 1 µm, large enough to be filtered easily. At pH 2.5 more affinity was observed with ion imprinted polymer in comparison to non-ion imprinted polymer. For the kinetic study, the most linear and rhythmical relation were seen in pseudo second order. The maximum sorption capacity of Fe(III) ions on Fe(III)-IIP and non-IIP was 170 and 30.0 µmolg−1, respectively. The relative selectivity factor (αr) values of Fe(III)/Fe(II), Fe(III)/Al(III) and Fe(III)/Cr(III) were 151.0, 84.6 and 91.9, respectively. The preconcentration factor was found to be 240. The developed method was successfully applied to the determination of trace Fe in the drinking water.
Keywords: Ion imprinted polymer; Polymerization; Fe(III); Methacrylic acid; 8-Hydroxyquinoline; Divinylbenzene; Azobisisobutyronitrile

In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers’ equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace’s equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace’s equation in an earth dam is considered. By solution of Laplace’s equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers’ equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers’ equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace’s equation, Galerkin and least square methods can show water table correctly in earth dam.
Keywords: Earth dam; Elliptical equations; Hyperbolic equations; Numerical methods; Shock wave; The Burgers’ equation; The Laplace’s equation

Hydrogeochemical investigations were carried out in semi-arid region of Basara to estimate the quality of groundwater for its suitability for domestic and agricultural purposes. For this region 34 groundwater samples were collected in different locations and analyzed for various ions, viz., Na+, Ca2+, Mg2+, K+, Cl, HCO3 , SO4 2−, CO3 2−, HCO3 , NO3 and F to assess the water chemistry with sodium absorption ratio, %Na, residual sodium carbonate, magnesium hazard. The nitrate and fluoride concentrations were above the maximum permissible limit, while calcium, sodium, potassium and chloride were found below the desirable limits in most of the groundwater samples. The Wilcox diagram illustrates that 59% of the samples belong to excellent to good category, while the US Salinity Laboratory diagram indicates medium salinity/low sodium content in 64.70% of samples. In general, the geochemistry of groundwater in Basara region is influenced by the water rock processes through percolation and dissolution of rock forming minerals, while calculated values of saturation index for Anhydrite, Aragonite, Artinite, Brucite, Calcite, Fluorite, Gypsum, Dolomite and Magnesite of the groundwater samples were less than zero, indicating under-saturation. Chadha rectangular diagram for geochemical classification and hydrochemical processes of groundwater for Basara provinces indicates 50% of Na+–Cl, 29% of Ca2+–Mg2+–Cl and 18% of the water samples concentrate in the category of Na+–HCO3 type.
Keywords: Hydrochemistry; Groundwater quality; SAR; %Na; RSC; Basara; South India

Futuristic isotope hydrology in the Gulf region by U. Saravana Kumar; Khaled Hadi (1-7).
The Gulf region is one of the most water-stressed parts in the world. Water in the region is very scarce, shortage of supply and lacking of renewable water resources, while the demand for water is growing day by day. It is thus essential to implement modern approaches and technologies in addressing water-related issues. In this context, isotope hydrology will provide invaluable aid. Some of the most important areas of futuristic applications of isotope hydrology include evaluation of aquifer recharge, storage and their recovery system, understanding of dynamic changes due to long-term exploitation of the groundwater, development and management of shared groundwater aquifers, fresh groundwater discharge along the Arabian Gulf, identification and quantification of hydrocarbon contamination in groundwater; soil moisture and solute movement in unsaturated zone, paleoclimate reconstruction, etc. Literature survey suggests, in general, not many isotope studies on the above have been reported.
Keywords: Environmental isotopes; Groundwater sustainability; Submarine groundwater discharge; Artificial recharge; Paleoclimate reconstruction

Surveying drinking water quality (Balikhlou River, Ardabil Province, Iran) by Mehdi Aalipour erdi; Hassan Gasempour niari; Seyyed Reza Mousavi Meshkini; Somayeh Foroug (1-7).
Considering the importance of Balikhlou River as one of the most important water sources of Ardabil, Nir and Sarein cities, maintaining water quality of this river is the most important goals in provincial and national levels. This river includes a wide area that provides agricultural, industrial and drinking water for the residents. Thus, surveying the quality of this river is important in planning and managing of region. This study examined the quality of river through eight physicochemical parameters (SO4, No3, BOD5, TDS, turbidity, pH, EC, COD) in two high- and low-water seasons by international and national standards in 2013. For this purpose, a review along the river has been done in five stations using t test and SPSS software. Model results showed that the amount difference in TDS and EC with WHO standards, and TDS rates with Iran standards in low-water seasons, pH and EC with WHO standards in high-water seasons, is not significant in high-water season; but for pH and SO4 parameters, turbidity and NO3 in both standards and EC value with WHO standard in low-water season and pH, EC, SO4 parameters and turbidity and NO3 in high-water season have significant difference from 5 to 1%, this shows the ideal limit and lowness of parameters for different usage.
Keywords: Balikhlou River; Physicochemical; Iran and WHO standards

Optimization of banana trunk-activated carbon production for methylene blue-contaminated water treatment by Mohammed Danish; Tanweer Ahmad; W. N. A. W. Nadhari; Mehraj Ahmad; Waheed Ahmad Khanday; Lou Ziyang; Zhou Pin (1-11).
This experiment was run to characterize the banana trunk-activated carbon through methylene blue dye adsorption property. The H3PO4 chemical activating agent was used to produce activated carbons from the banana trunk. A small rotatable central composite design of response surface methodology was adopted to prepare chemically (H3PO4) activated carbon from banana trunk. Three operating variables such as activation time (50–120 min), activation temperature (450–850 °C), and activating agent concentration (1.5–7.0 mol/L) play a significant role in the adsorption capacities (q) of activated carbons against methylene blue dye. The results implied that the maximum adsorption capacity of fixed dosage (4.0 g/L) banana trunk-activated carbon was achieved at the activation time of 51 min, the activation temperature of 774 °C, and H3PO4 concentration of 5.09 mol/L. At optimum conditions of preparation, the obtained banana trunk-activated carbon has adsorption capacity 64.66 mg/g against methylene blue. Among the prepared activated carbons run number 3 (prepared with central values of the operating variables) was characterized through Fourier transform infrared spectroscopy, field emission scanning microscopy, and powder X-ray diffraction.
Keywords: Activated carbon; Banana trunk; Chemical activation; Optimization; Adsorption capacity

Removal of phenol from aqueous solution using polymer inclusion membrane based on mixture of CTA and CA by Nadjib Benosmane; Baya Boutemeur; Safouane M. Hamdi; Maamar Hamdi (1-6).
Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. In the present work, the removal of phenol from aqueous solution across polymer inclusion membrane (PIM), based on mixture of cellulose triacetate and cellulose acetate as support (75/25%), calix[4]resorcinarene derivative as a carrier and 2-nitrophenyl octyl ether (2-NPOE) as plasticizer was investigated. The experimental part of this investigation involved the influence of carrier nature, plasticizer concentration, pH phases, and phenol initial concentration on the removal efficiency of phenol from synthetic wastewater. A PIM containing 0.1 g (of mixture polymer), (0.15 g/g mixture of polymer) of carrier and (0.03 ml/g mixture of polymer) of 2-NPOE provided the highest percentage of phenol removal efficiency over a 6-day transport; the removal was found to be about 95%, indeed the removal was found to be highly dependent of pH phases. The feed solution in these transport experiments was at pH 2, while the stripping solution contained 0.20 M NaOH. This study claims that the PIM with a mixture of cellulose derivatives can be used effectively to remove phenols from wastewaters.
Keywords: PIMs; Calix[4]resorcinarene; Cellulose derivatives; Wastewater treatment; Phenol removal

Irradiation of wastewater with electron beam is a key to sustainable smart/green cities: a review by Kaizar Hossain; Y. Avasn Maruthi; N. Lakshmana Das; K. P. Rawat; K. S. S. Sarma (1-11).
Remediation of wastewater, sludge and removal of objectionable substances from our environment using radiation technology is neglected. Hardly, a couple of decades ago, application of electron beam (EB) technology has gained attention for waste management. When wastewater is irradiated with electron beam, the beam can alter the physico-chemical properties of irradiated aqueous material and also transform wastewater chemicals due to the excitation or ionization of chemical molecules. Thus, chemical reactions may be capable of producing new compounds. The beam of electrons initiates primary reactions to induce the excitation or ionization of molecules at varied rates. This review paper will help to a budding researcher how to optimize the irradiation process to achieve high efficiency with low electron beam energy which is economically viable/feasible. Application of E-beam radiation for wastewater treatment may ensure future smart cities with sustainable water resources management.
Keywords: Wastewater; Electron beam radiation; Remediation; Smart cities and sustainable environment

The sediments in stormwater runoff are recognised as the major sink of the heavy metals and affect the soil quality in the catchment. The runoff sediments are also important in the management of contaminant transport to receiving water bodies. In the present work, stormwater during several major rain events was collected from nine principal locations of Guwahati, India. The solid phase was separated from the liquid phase and was investigated for the total contents of Cd, Co, Cr, Cu, Mn and Zn as well as their distribution among the prominent chemical phases. Sequential extraction procedure was used for the chemical fractionation of the metals that contains five steps. The total metal concentration showed the trend, Cd < Co < Cu < Cr < Zn < Mn. The relative distribution of the metals showed that Cd was available mostly in the exchangeable and the carbonate bound fractions, which were the most mobile and high-risk fractions. Co with medium mobility was also found to be in the high-risk category. On the other hand, the mobilities of Cu and Zn were relatively low and these were, therefore, the least bioavailable metals in the runoff sediments falling in medium-risk category.
Keywords: Runoff sediment; Speciation; Sequential extraction; Metals

The present study explored the feasibility of using derived and thiourea-functionalized silica as adsorbent for the removal of cadmium under different experimental conditions. Effects of various parameters such as function of point of zero charge (pHPZC), solution pH, sorbent-sorbate resident time and ratio, concentration and temperature were investigated. The sorption of cadmium followed the pseudo-second-order rate kinetics. Thermodynamic studies revealed that the sorption of cadmium was endothermic and spontaneous, with good affinity toward the sorbent. Various isotherm models, viz. Langmuir, Freundlich, Temkin, Dubinin–Radushkevich, Harkins–Jura, and Halsey isotherms were used to analyze the equilibrium data at different temperatures. The Freundlich, Halsey, Langmuir, and Temkin models were found to be in good agreement with the experimental data with high R 2, low RMSE, and low χ 2 values. The results show that the sorption capacity increases with an increase in solution temperature from 28 to 65 °C. The maximum sorption capacity calculated from Langmuir isotherm was 27.55 and 28.41 mg g−1 for derived and thiourea-functionalized silica, respectively, at optimum condition of pH 5 and contact time of 120 min.
Keywords: Cadmium; Silica; Isotherm; Functionalization; Thiourea; Endothermic

Assessment and modeling of the groundwater hydrogeochemical quality parameters via geostatistical approaches by Shawgar Karami; Hassan Madani; Homayoon Katibeh; Ahmad Fatehi Marj (1-13).
Geostatistical methods are one of the advanced techniques used for interpolation of groundwater quality data. The results obtained from geostatistics will be useful for decision makers to adopt suitable remedial measures to protect the quality of groundwater sources. Data used in this study were collected from 78 wells in Varamin plain aquifer located in southeast of Tehran, Iran, in 2013. Ordinary kriging method was used in this study to evaluate groundwater quality parameters. According to what has been mentioned in this paper, seven main quality parameters (i.e. total dissolved solids (TDS), sodium adsorption ratio (SAR), electrical conductivity (EC), sodium (Na+), total hardness (TH), chloride (Cl) and sulfate (SO4 2−)), have been analyzed and interpreted by statistical and geostatistical methods. After data normalization by Nscore method in WinGslib software, variography as a geostatistical tool to define spatial regression was compiled and experimental variograms were plotted by GS+ software. Then, the best theoretical model was fitted to each variogram based on the minimum RSS. Cross validation method was used to determine the accuracy of the estimated data. Eventually, estimation maps of groundwater quality were prepared in WinGslib software and estimation variance map and estimation error map were presented to evaluate the quality of estimation in each estimated point. Results showed that kriging method is more accurate than the traditional interpolation methods.
Keywords: Estimation variance; Geostatistical method; Groundwater quality; Ordinary kriging; Variogram; Varamin plain

Characterization and removal of natural organic matter, which is contained in the effluent of slow sand filters, was observed by alum coagulation under various dosages. In addition to non-purgedable dissolved organic carbon (NPDOC), trihalomethanes formation potential (THMFP) and haloacetic acid formation potential (HAAFP) measurement, high-performance size-exclusion chromatography (HPSEC) with ultraviolet/visible and dissolved organic carbon (DOC) detectors was used to characterize the various organic fractions contained in the water before and after coagulation. The results show that alum coagulation could effectively remove hydrophobic aromatic, which forms mainly humic substances. The reduction in THMFP was found to be higher than that of NPDOC and HAAFP under specific alum dosage, and the former was also found to be proportional to the corresponding reduction in the area of hydrophobic aromatic fraction, mostly humic subtances, as obtained from HPSEC chromatogram with peak-fitting.
Keywords: Coagulation; HPSEC; Peak-fitting

Determination of fault zone and hydro-geophysical characteristics of the fractured aquifers are complicated, because their fractures are controlled by different factors. Therefore, 60 VESs were carried out as well as 17 productive wells for determining the locations of the fault zones and the characteristics of the carbonate aquifer at the eastern desert, Egypt. The general curve type of the recorded rock units was QKH. These curves were used in delineating the zones of faults according to the application of the new assumptions. The main aquifer was included at end of the K-curve type and front of the H-curve type. The subsurface layers classified into seven different geoelectric layers. The fractured shaly limestone and fractured limestone layers were the main aquifer and their resistivity changed from low to medium (11–93 Ω m). The hydro-geophysical properties of this aquifer such as the areas of very high, high, and intermediate fracture densities of high groundwater accumulations, salinity, shale content, porosity distribution, and recharging and flowing of groundwater were determined. The statistical analysis appeared that depending of aquifer resistivity on the water salinities (T.D.S.) and water resistivities add to the fracture density and shale content. The T.D.S. increasing were controlled by Na+, Cl, Ca2+, Mg2+, and then (SO4)2−, respectively. The porosity was calculated and its average value was 19%. The hydrochemical analysis of groundwater appeared that its type was brackish and the arrangements of cation concentrations were Na+ > Ca2+ > Mg2+ > K+ and anion concentrations were Cl > (SO4)2− > HCO3  > CO3 . The groundwater was characterized by sodium–bicarbonate and sodium–sulfate genetic water types and meteoric in origin. Hence, it can use the DC-resistivity method in delineating the fault zone and determining the hydro-geophysical characteristics of the fractured aquifer with taking into account the quality of measurements and interpretation.
Keywords: DC-resistivity method; VESs; Fault zones; Hydro-geophysical characteristics; Statistical analysis; Hydrochemical analysis; Carbonate aquifer

Tofu wastewater treatment using vetiver grass (Vetiveria zizanioides) and zeliac by Romi Seroja; Hefni Effendi; Sigid Hariyadi (1-6).
Tofu production is a domestic industry, that most of it has no appropriate wastewater treatment facilities. Wastewater of tofu contains high organic matter which can decrease the water quality. This study aimed to analyze capability of Vetiveria zizanioides, L and zeliac in treating tofu wastewater industry. Zeliac is a new adsorbent, which consists of zeolite, activated carbon, limestone, rice husk ash and cement. Response surface methodology was applied to analyze the data, using central composite design with two factors, i.e., time (3, 9, and 15 days) and waste concentration (20, 40, and 60%). The optimum treatment occurred at the time of 15 days and 38.41% of tofu wastewater concentration decreasing up to 76% of COD, 71.78% of BOD, and 75.28% of TSS.
Keywords: Phytoremediation; Vetiveria zizanioides ; Wastewater; Tofu; Zeliac

Solid waste production is rapidly increasing in Bangladesh and landfill leachate is the consequence of the decomposition of this waste. These leachates contain heavy metals and significant amount of dissolved organic matter (DOM). DOM is known to have considerable role in heavy metals speciation. Hence, it is important to characterize DOM/leachate and evaluate toxic metals binding affinity of DOM. The objectives of this study were to characterize the DOM in landfill leachate through physico-chemical and optical analyses and to investigate the toxic metals (Ni2+, Pb2+ and Hg2+) binding affinity of three different ages (fresh sample L-1, young sample L-2 and mature sample L-3) DOM samples. Results suggested that leachate is a potential pollutant which contained very high organic pollutant load. Conditional stability constant (LogK) and percentages of fluorophores that correspond to metal binding (%f) values indicated that young DOM sample (L-2) had the highest binding affinity to all the three metals ions. In general, DOM samples showed the following order affinity to the metal ions; Ni2+ binding affinity: L-2 > L-3 > L-1, Pb2+ binding affinity: L-2 > L-3 > L-1 and Hg2+ binding affinity: L-2 > L-1 > L-3.
Keywords: Landfill leachate; Solid waste; DOM; Toxic metals; Binding affinity; Bangladesh

The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient (λ), friction factor (f) and secondary flow coefficient (k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth (β) and width ratio (α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this region.
Keywords: Depth-averaged velocity; Boundary shear stress; Secondary flows; Shiono and Knight Method; Asymmetric compound channels

Tidal variation and water level in aquifer is an important function in the coastal environment, this study attempts to find the relationship between water table fluctuation and tides in the shallow coastal aquifers. The study was conducted by selecting three coastal sites and by monitoring the water level for every 2-h interval in 24 h of observation. The study was done during two periods of full moon and new moon along the Cuddalore coastal region of southern part of Tamil Nadu, India. The study shows the relationship between tidal variation, water table fluctuations, dissolved oxygen, and electrical conductivity. An attempt has also been made in this study to approximate the rate of flow of water. Anyhow, the differences are site specific and the angle of inclination of the water table shows a significant relation to the mean sea level, with respect to the distance of the point of observation from the sea and elevation above mean sea level.
Keywords: Tide; Water table; Coastal aquifers; Dissolved oxygen; Electrical conductivity; Rate of flow

Pesticide residues analysis in water samples of Nagarpur and Saturia Upazila, Bangladesh by M. Hasanuzzaman; M. A. Rahman; M. S. Islam; M. A. Salam; M. R. Nabi (1-6).
Pesticides used to protect the crops from pest attack in the agricultural fields pose harmful effect to the non-target organisms such as human and many other aquatic and terrestrial organisms either directly or indirectly through food chain. The present study was conducted to monitor a total of seven pesticide residues under organochlorine, organophosphorus and carbamate pesticides in three different sources of pond water, paddy field water and tube-well water from Nagarpur Upazila and paddy field water in the company of Dhaleshwari and Gazikhali river water from Saturia Upazila, Bangladesh. A total of 40 water samples were analyzed using high-performance liquid chromatography equipped with ultraviolet detector. Among the organophosphorus pesticides, diazinon was detected in eight water samples at a concentration ranging from 4.11 to 257.91 μg/l whereas, malathion was detected only in one water sample at a concentration of 84.64 μg/l and chlorpyrifos pesticide was also detected only in one water sample and the concentration was 37.3 μg/l. Trace amount of carbaryl was identified but it was below the detection limit. None of the tested water samples was found to be contaminated with DDT or its metabolites (DDE and DDD). The water samples contaminated with the suspected pesticides were above the acceptable limit except for the fish pond samples of Sahabatpur and Dubaria union. To control the misuse of pesticides and to reduce the possible health risk, appropriate control systems of pests such as integrated pest management system should be implemented immediately by the authorities of the country.
Keywords: Pesticide; Water sample; HPLC; Organochlorine; Organophosphorus; IPM

Research on preventive technologies for bed-separation water hazard in China coal mines by Herong Gui; Shijie Tong; Weizhong Qiu; Manli Lin (1-8).
Bed-separation water is one of the major water hazards in coal mines. Targeted researches on the preventive technologies are of paramount importance to safe mining. This article studied the restrictive effect of geological and mining factors, such as lithological properties of roof strata, coal seam inclination, water source to bed separations, roof management method, dimensions of mining working face, and mining progress, on the formation of bed-separation water hazard. The key techniques to prevent bed-separation water-related accidents include interception, diversion, destructing the buffer layer, grouting and backfilling, etc. The operation and efficiency of each technique are corroborated in field engineering cases. The results of this study will offer reference to countries with similar mining conditions in the researches on bed-separation water burst and hazard control in coal mines.
Keywords: Bed-separation water; Influencing factors; Interception and diversion; Destruction of the buffer layer; Filling the bed separation void by grouting

Quality of water resources in Kullu Valley in Himachal Himalayas, India: perspective and prognosis by Nandini Thakur; Madhuri Rishi; Diana A. Sharma; Tirumalesh Keesari (1-13).
The water quality in mountain regions of Himalaya is considered to be good and quantity adequate. However, recent reports suggest that urbanisation and population growth have been tremendous, which are impacting the land use/cover changes and also endangering the water resources both in quality and quantity. This paper elaborates the systematic investigation carried out on different attributes impacting the drinking water resources in Kullu valley. Two approaches were employed in this study: (1) ex-ante approach involving field survey and secondary data analysis from ancillary sources and (2) hydrochemical approach for the measurement of water quality parameters from springs. Results from ex-ante approach infer rise in population of about 15% during 2001–2011, which led to a significant change in land use pattern, microclimate and also increased water demand. Hydrochemistry of the water samples in the study area has indicated that the current status of spring waters is satisfactory for drinking purposes with a few incidences of high NO3 which is mostly attributed to contamination from sewage, while F, Cl and TDS contamination is mainly confined to hot springs. From both ex-ante approach and primary hydrochemical data it can be inferred that springs need to be restored in terms of both quantity and quality. Hydrochemical interpretation suggests two main groups of samples: (1) low TDS and Ca–Mg–Cl–HCO3 type, which are mainly recharging waters with very less interaction with the aquifer material and (ii) moderate TDS and Mg–Ca–Cl, Ca–Na–HCO3, Na–Ca–Cl–SO4 and Ca–Mg–HCO3 and have undergone water–rock interaction. Based on the inferences obtained from the Piper’s, Chadha’s and Durov’s classification no evidence of hot springs contaminating or contributing to other cold springs and shallow groundwater (hand pump) is found. The study concludes that the water resources are vulnerable to anthropogenic interventions and needs treatment prior to drinking. Periodic monitoring of water quality and adopting proper treatment procedures are essential for supplying safe and sustainable water to the community in the Kullu valley, Himachal Pradesh.
Keywords: Mountain habitant; Ex-ante approach; Hydrochemistry; Water quality; Urbanisation

In many hydraulic structures, side weirs have a critical role. Accurately predicting the discharge coefficient is one of the most important stages in the side weir design process. In the present paper, a new high efficient side weir is investigated. To simulate the discharge coefficient of these side weirs, three novel soft computing methods are used. The process includes modeling the discharge coefficient with the hybrid Adaptive Neuro-Fuzzy Interface System (ANFIS) and three optimization algorithms, namely Differential Evaluation (ANFIS-DE), Genetic Algorithm (ANFIS-GA) and Particle Swarm Optimization (ANFIS-PSO). In addition, sensitivity analysis is done to find the most efficient input variables for modeling the discharge coefficient of these types of side weirs. According to the results, the ANFIS method has higher performance when using simpler input variables. In addition, the ANFIS-DE with RMSE of 0.077 has higher performance than the ANFIS-GA and ANFIS-PSO methods with RMSE of 0.079 and 0.096, respectively.
Keywords: ANFIS; Differential evaluation; Discharge coefficient; Genetic algorithm; Hybrid method; Modified side weir; Particle swarm optimization

Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0–0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi < 2 dS/m), the irrigation water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.
Keywords: Drainage; Irrigation; Water management; Root-zone; Soil salinity

Effect of detergents from laundry greywater on soil properties: a preliminary study by R. M. Mohamed; A. A. Al-Gheethi; J. Noramira; C. M. Chan; M. K. Amir Hashim; M. Sabariah (1-7).
Detergent compounds are classes of the organic micro-pollutants in the laundry wastewater. The disposal of these compounds into the soil has several adverse effects on their composition. In the present study, changes in the soil characteristics, which included saturated hydraulic conductivity (K sat), EC, pH, exchangeable sodium percentage, cation exchange capacity (CEC), and sodium adsorption on ratio were examined after the irrigation with laundry wastewater. Ten clothes were washed with one full cap of powder (PLD) and liquid laundry (LLD). Laundry greywater samples were used for the irrigation of soil. The results revealed that the pH of soil increased from 3.85 to 4.42 and 4.09 after irrigation by PLD and LLD greywater, respectively. The EC of the irrigated soil increased from 50.32 to 152.5 and 147.6 μS/cm, respectively. The CEC was raised to 79.93 and 41.39 meq/100 g, while K sat was reduced to 7.38 × 10−10 and 7.11 × 10−10 cm/s, respectively. These findings highlighted the negative effects of laundry greywater discharge on soil properties.
Keywords: Laundry greywater; Hydraulic conductivity; CEC; ESP; K sat

Application of polymeric membranes for the adsorption of hazardous pollutants may lead to the development of next-generation reusable and portable water purification appliances. Membranes for membrane adsorption (MA) have the dual function of membrane filtration and adsorption to be very effective to remove trace amounts of pollutants such as cationic heavy metals, anionic phosphates and nitrates. In this review article, recent progresses in the development of MA membranes are surveyed. In addition, recent progresses in the development of advanced adsorbents such as nanoparticles are summarized, since they are potentially useful as fillers in the host membrane to enhance its performance. The future directions of R&D in this field are also shown in the conclusion section.
Keywords: Adsorption; Graphene; Water treatment; Carbon nanotubes; Membrane; Wastewater; Zeolites

Multi-scale research of time and space differences about ecological footprint and ecological carrying capacity of the water resources by Jiahong Li; Xiaohui Lei; Qiang Fu; Tianxiao Li; Yu Qiao; Lei Chen; Weihong Liao (1-12).
A multi-scale assessment framework for assessing and comparing the water resource sustainability based on the ecological footprint (EF) is introduced. The study aims to manage the water resource from different views in Heilongjiang Province. First of all, from the scale of each city, the water ecological carrying capacity (ECC) was calculated from 2000 to 2011, and map the spatial distribution of the recent 3 years which show that, the water ecological carrying capacity (ECC) is uneven and has a downward trend year by year. Then, from the perspective of the five secondary partition basins in Heilongjiang Province, the paper calculated the ecological carrying capacity (ECC), the ecological footprint (EF) and ecological surplus and deficit (S&D) situation of water resources from 2000 to 2011, which show that the ecological deficit situation is more prominent in Nenjiang and Suifenhe basins which are in an unsustainable development state. Finally, from the perspective of the province, the paper calculated the ecological carrying capacity (ECC), the ecological footprint (EF) and ecological S&D of water resources from 2000 to 2011 in Heilongjiang Province, which show that the ecological footprint (EF) is in the rising trend, and the correlation coefficient between the ecological carrying capacity (ECC) and the precipitation is 0.8. There are 5 years of unsustainable development state in Heilongjiang. The proposed multi-scale assessment of WEF aims to evaluate the complex relationship between water resource supply and consumption in different spatial scales and time series. It also provides more reasonable assessment result which can be used by managers and regulators.
Keywords: Multi-scale; Time and space differences; Water resources; Ecological footprint; Ecological carrying capacity; Sustainable development

Two multi-criteria decision analysis methods were employed to evaluate six water sources. The analytical hierarchical process (AHP) ranked borehole highest with a rank of 0.321 followed by water board with a rank of 0.284. The other sources ranked far below these two as follows: water tanker (0.139), rainwater harvesting (0.117), shallow well (0.114) and stream (0.130). The Technique for Order Performance by Similarity to the Ideal Solution (TOPSIS) ranked water board highest with a rank of 0.865, followed by borehole with a value of 0.778. Quality and risk of contamination were found to be the most influential criteria while seasonality was the least.
Keywords: Multi-criteria; Water; Ranking; AHP; TOPSIS; Criteria; Nigeria

Measurement of submarine groundwater discharge using diverse methods in Coleroon Estuary, Tamil Nadu, India by R. Prakash; K. Srinivasamoorthy; S. Gopinath; K. Saravanan (1-11).
Submarine groundwater discharge (SGD) is described as submarine inflow of fresh and brackish groundwater from land into the sea. The release of sewages from point and non-point source pollutants from industries, agricultural and domestic activities gets discharged through groundwater to ocean creating natural disparity like decreasing flora fauna and phytoplankton blooms. Hence, to quantify fluxes of SGD in coastal regions is important. Quantification of SGD was attempted in Coleroon estuary, India, using three dissimilar methods like water budget, Darcy law and manual seepage meter. Three seepage meters were installed at two prominent litho units (alluvium and fluvio marine) at a distance of (0–14.7 km) away from Bay of Bengal. The water budget and Darcy law-quantified submarine seepage at a rate of 6.9 × 106 and 3.2 × 103 to 308.3 × 103 m3 year−1, respectively, and the seepage meter quantified seepage rate of 0.7024 m h−1 at an average. Larger seepage variations were isolated from three different techniques and the seepage rates were found to be influenced by hydrogeological characteristics of the litho units and distance from the coast.
Keywords: Submarine groundwater discharge (SGD); Water budget; Darcy’s law; Manual seepage meter; Coleroon estuary

Satellite based remote sensing technology has proven to be an effectual tool in analysis of drainage networks, study of surface morphological features and their correlation with groundwater management prospect at basin level. The present study highlights the effectiveness and advantage of remote sensing and GIS-based analysis for quantitative and qualitative assessment of flood plain region of lower Kosi river basin based on morphometric analysis. In this study, ASTER DEM is used to extract the vital hydrological parameters of lower Kosi river basin in ARC GIS software. Morphometric parameters, e.g., stream order, stream length, bifurcation ratio, drainage density, drainage frequency, drainage texture, form factor, circularity ratio, elongation ratio, etc., have been calculated for the Kosi basin and their hydrological inferences were discussed. Most of the morphometric parameters such as bifurcation ratio, drainage density, drainage frequency, drainage texture concluded that basin has good prospect for water management program for various purposes and also generated data base that can provide scientific information for site selection of water-harvesting structures and flood management activities in the basin. Land use land cover (LULC) of the basin were also prepared from Landsat data of 2005, 2010 and 2015 to assess the change in dynamic of the basin and these layers are very noteworthy for further watershed prioritization.
Keywords: Remote sensing; GIS; Morphometry; ASTER-DEM; Landsat; Kosi basin

Biosorption of cationic dyes on breadfruit (Artocarpus altilis) peel and core by Namal Priyantha; Linda B. L. Lim; D. T. B. Tennakoon; Elaine T. Z. Liaw; Chieng Hei Ing; Anushka B. Liyandeniya (1-11).
The purpose of this research is to investigate biosorption characteristics of two cationic dyes, methylene blue (MB) and methyl violet 2B (MV), on breadfruit (Artocarpus altilis) peel and core. Characterization of breadfruit waste was conducted using surface titrations, thermogravimetry, and Fourier transform infrared spectroscopy. The extent of interaction between dyes and each biosorbent was monitored by absorbance measurements, which was then used in isotherm, thermodynamics, and kinetics analysis. Biosorption of MB and MV on breadfruit peel and core reaches equilibrium in 150–180 min. All four systems under investigation (MB-breadfruit peel, MB-breadfruit core, MV-breadfruit peel, and MV-breadfruit core) show similar extent of dye removal of about 80% under the conditions employed. Biosorption of both dyes on both biosorbents follow the Langmuir adsorption isotherm model at the ambient pH, at which the breadfruit surface bears a negative charge. Kinetics of biosorption of MB on breadfruit waste is so fast that it is not possible to determine the order of adsorption kinetics at the concentration level employed. The rate of biosorption of MV on breadfruit waste is smaller and follows pseudo second order kinetics with rate constants of 153.5 and 31.7 g mmol−1 min−1 for peel and core, respectively. Thermodynamics studies conducted for each biosorption system provide negative ΔG Θ, ΔH Θ and ΔS Θ values with the maximum biosorption for MB at the ambient temperature of 24 °C, while that for MV is obtained between 40 and 50 °C. All four biosorption systems show spontaneity and exothermic behaviour to varying degrees.
Keywords: Breadfruit waste; Methylene blue; Methyl violet 2B; Equilibrium studies; Kinetics