Applied Water Science (v.6, #4)

The adsorption behavior of rice husk ash with respect to manganese and iron has been studied by batch methods to consider its application for water and waste water treatment. The optimum conditions of adsorption were determined by investigating the effect of initial metal ion concentration, contact time, adsorbent dose, pH value of aqueous solution and temperature. Adsorption equilibrium time was observed at 120 min. The adsorption efficiencies were found to be pH dependent. The equilibrium adsorption experimental data were found to fit the Langmuir, Freundlich and Temkin isotherms for iron, but fitted only Langmuir isotherm for manganese. The pseudo-second order kinetic model was found to describe the manganese and iron kinetics more effectively. The thermodynamic experiment revealed that the adsorption processes involving both metals were exothermic. The adsorbent was finally applied to typical raw water with initial manganese and iron concentrations of 3.38 mg/l for Fe and 6.28 mg/l, respectively, and the removal efficiency was 100 % for Mn and 70 % for Fe. The metal ions were desorbed from the adsorbent using 0.01 M HCl, it was found to quantitatively remove 67 and 86 % of Mn and Fe, respectively, within 2 h. The results revealed that manganese and iron are considerably adsorbed on the adsorbent and could be an economic method for the removal of these metals from aqueous solutions.
Keywords: Thermodynamics; Kinetics; Biosorption; Rice husk ash; Isotherms

Removal of lead from aqueous solutions by a poly(acrylic acid)/bentonite nanocomposite by H. R. Rafiei; M. Shirvani; O. A. Ogunseitan (331-338).
We synthesized a novel poly acrylic acid–organobentonite (PAA–Bent) nanocomposite by successive intercalation of cetyltrimethylammonium (CTA) surfactant and polyacrylic acid (PAA) into the bentonite (Bent) interlayer spaces. The surfactant-modified clay (CTA–Bent) and PAA–Bent nanocomposite were characterized by XRD and FT-IR techniques and used for removal of Pb(II) from aqueous solution. The XRD results confirmed the intercalation of CTA and PAA into the interlayer spaces of the bentonite increasing the d 001 spacing of the clay from 12.2 up to 38.9 Å. FT-IR analysis of the modified clay samples revealed the functional groups of CTA and PAA constituents alighted on the bentonite surfaces. Maximum Pb sorption capacity of the Bent and PAA–Bent predicted by Langmuir model were 52.3 and 93.0 mg g−1, respectively, showing that the synthesized nanocomposite superiorly adsorbed Pb from the solution as compared to the Bent. The maximum Pb removal efficiency of 99.6 % was achieved by the nanocomposite at 25 °C with <30 min contact time for a 7.5 g L−1 solid-to-liquid ratio and an initial metal concentration of 400 mg L−1. The results indicated that PAA–Bent nanocomposite can be efficiently used as a superadsorbent for the removal of Pb(II) from aqueous solution.
Keywords: Polymer–clay hybrid; Organo-clay; Pb removal; Composite; Water purification

In the present study, a coagulation process was used to treat paper-recycling wastewater with alum coupled with poly aluminum chloride (PACl) as coagulants. The effect of each four factors, viz. the dosages of alum and PACl, pH and chemical oxygen demand (COD), on the treatment efficiency was investigated. The influence of these four parameters was described using response surface methodology under central composite design. The efficiency of reducing turbidity, COD and the sludge volume index (SVI) were considered the responses. The optimum conditions for high treatment efficiency of paper-recycling wastewater under experimental conditions were reached with numerical optimization of coagulant doses and pH, with 1,550 mg/l alum and 1,314 mg/l PACl and 9.5, respectively, where the values for reduction of 80.02 % in COD, 83.23 % in turbidity, and 140 ml/g in SVI were obtained.
Keywords: Coagulation; Paper-recycling wastewater; Alum; Polyaluminum chloride

Lead removal kinetics from synthetic effluents using Algerian pine, beech and fir sawdust’s: optimization and adsorption mechanism by N. Nordine; Z. El Bahri; H. Sehil; R. I. Fertout; Z. Rais; Z. Bengharez (349-358).
The present paper exposes the lead adsorption from synthetic effluents using natural and available materials. Pine, beech and fir sawdust’s were used and compared for their lead adsorption ability. To optimize the sorption phenomenon, some process parameters were studied namely temperature, pH, contact time, initial Pb(II) concentration, sawdust’s dosage and granulometry, stirring speed and medium salinity. The materials were characterized by FTIR spectroscopy, X-ray diffraction and fluorescence. The results demonstrated that the pine sawdust gave the best level for lead adsorption (15.5 mg/g) in the following conditions and at 23 ± 2 °C of temperature : pH 5.45 ± 0.05, 100 mg/L of initial Pb(II) concentration and 10 g (per liter of solution) of pine sawdust composed from granules with mean diameter lower than 500 µm. As well, the adsorption kinetics seem to satisfy to Langmuir isotherm model.
Keywords: Pb(II); Adsorption; Kinetic; Pine sawdust; Isotherm models

The study area forms a part of the Middle Ganga Plain (MGP) and experiences intensive groundwater draft due to domestic, irrigation and industrial purposes. Geoelectrical surveys were carried out in a geomorphic unit of MGP called South Ganga Plain, along the north–south traverse covering a total 50 km stretch. Interpreted results of the total of 17 vertical electrical soundings, carried out, provided information on aquifer and aquitard geometry and sediment nature in different aquifer systems. Bedrock topography is also demarcated along the north–south transect. The estimated dip of massive bedrock is less than 0.5° and dips toward north. The survey results show that a two-tier aquifer system exists in Newer alluvium parts of the study area and it is replaced by a single aquifer system at Older alluvium that occurs under thick clay/sandy clay bed in the southern part. An exponential decay of the aquifer potential is observed from north to south. Paleo channel Sone River is traced and it forms a potential aquifer.
Keywords: South Ganga Plain (SGP); Geoelectrical survey; Aquifer geometry; Newer alluvium; Older alluvium; Bedrock topography

Assessing groundwater quality for irrigation using indicator kriging method by Masoomeh Delbari; Meysam Amiri; Masoud Bahraini Motlagh (371-381).
One of the key parameters influencing sprinkler irrigation performance is water quality. In this study, the spatial variability of groundwater quality parameters (EC, SAR, Na+, Cl, HCO3 and pH) was investigated by geostatistical methods and the most suitable areas for implementation of sprinkler irrigation systems in terms of water quality are determined. The study was performed in Fasa county of Fars province using 91 water samples. Results indicated that all parameters are moderately to strongly spatially correlated over the study area. The spatial distribution of pH and HCO3 was mapped using ordinary kriging. The probability of concentrations of EC, SAR, Na+ and Cl exceeding a threshold limit in groundwater was obtained using indicator kriging (IK). The experimental indicator semivariograms were often fitted well by a spherical model for SAR, EC, Na+ and Cl. For HCO3 and pH, an exponential model was fitted to the experimental semivariograms. Probability maps showed that the risk of EC, SAR, Na+ and Cl exceeding the given critical threshold is higher in lower half of the study area. The most proper agricultural lands for sprinkler irrigation implementation were identified by evaluating all probability maps. The suitable areas for sprinkler irrigation design were determined to be 25,240 hectares, which is about 34 percent of total agricultural lands and are located in northern and eastern parts. Overall the results of this study showed that IK is an appropriate approach for risk assessment of groundwater pollution, which is useful for a proper groundwater resources management.
Keywords: Groundwater quality; Geostatistics; GIS; Probability map; Sprinkler irrigation

Assessment of water quality and suitability analysis of River Ganga in Rishikesh, India by A. K. Haritash; Shalini Gaur; Sakshi Garg (383-392).
The water samples were collected from River Ganga in Rishikesh during December 2008 to assess its suitability for drinking, irrigation, and industrial usages using various indices. Based on the values obtained and suggested designated best use, water in upper segment can be used for drinking but after disinfection (Class A); organized outdoor bathing in middle segment (Class B); and can be used as drinking water source (Class C) in lower segment in Rishikesh. All the parameters were within the specified limits for drinking water quality except E. coli. The indices of suitability for irrigation and industrial application were also evaluated. The irrigation quality ranged from good to excellent at almost all places with the exception of percent sodium. The abundance of major ions followed K+> Ca2+> Cl > HCO3  > Na+> Mg2+> CO3 2− trend. The major cations suggested that the water is alkaline (Na + K) than alkaline earth (Ca + Mg) type. The heavy metals (Pb, Cu, Zn, Ni) were found either absent or within the limits specified. There was no specific industrial input of pollutants. Industrial applications of the river water should be limited since the water was found to be aggressive, based on Langelier saturation index (0.3) and Ryznar stability index (8.8), with the problem of heavy to intolerable corrosion. Water quality of Ganga in Rishikesh was good with exception of most probable number (MPN) which needs regular monitoring and measures to control.
Keywords: Ganga; Designated best use (DBU); Rishikesh; Residual sodium carbonate (RSC); Sodium adsorption ratio (SAR); Permeability index (PI); Langelier saturation index (LSI)

Groundwater is the most important natural resource for drinking water to many people around the world, especially in rural areas where the supply of treated water is not available. Drinking water resources cannot be optimally used and sustained unless the quality of water is properly assessed. To this end, an attempt has been made to develop a suitable methodology for the assessment of drinking water quality on the basis of 11 physico-chemical parameters. The present study aims to select the fuzzy aggregation approach for estimation of the water quality index of a sample to check the suitability for drinking purposes. Based on expert’s opinion and author’s judgement, 11 water quality (pollutant) variables (Alkalinity, Dissolved Solids (DS), Hardness, pH, Ca, Mg, Fe, Fluoride, As, Sulphate, Nitrates) are selected for the quality assessment. The output results of proposed methodology are compared with the output obtained from widely used deterministic method (weighted arithmetic mean aggregation) for the suitability of the developed methodology.
Keywords: Water quality index (WQI); Fuzzy aggregation; Analytical hierarchical process (AHP)

The potential of using three different data-driven techniques namely, multilayer perceptron with backpropagation artificial neural network (MLP), M5 decision tree model, and Takagi–Sugeno (TS) inference system for mimic stage–discharge relationship at Gharraf River system, southern Iraq has been investigated and discussed in this study. The study used the available stage and discharge data for predicting discharge using different combinations of stage, antecedent stages, and antecedent discharge values. The models’ results were compared using root mean squared error (RMSE) and coefficient of determination (R 2) error statistics. The results of the comparison in testing stage reveal that M5 and Takagi–Sugeno techniques have certain advantages for setting up stage–discharge than multilayer perceptron artificial neural network. Although the performance of TS inference system was very close to that for M5 model in terms of R 2, the M5 method has the lowest RMSE (8.10 m3/s). The study implies that both M5 and TS inference systems are promising tool for identifying stage–discharge relationship in the study area.
Keywords: Stage–discharge relationship; M5 model; Artificial neural network; Gharraf River; Iraq