Applied Water Science (v.5, #4)

The main aim of this study was to evaluate the vulnerability of groundwater to contamination in the vicinity of Ramtha wastewater treatment plant using a modified DRASTIC method in a GIS environment. A groundwater pollution potential map was prepared using modified DRASTIC method by adding lineaments and land use/land cover parameters. The values of the modified DRASTIC index were classified into three categories: low, moderate and high. About 36.5 % of the study area is occupied by the high vulnerability class, 56.5 % is occupied by the moderate vulnerability class and 9 % is occupied by the low vulnerability class. Chemical analysis of the water samples collected from wells distributed in the study area and tapping Umm Rijam aquifer indicated that the nitrate concentration ranges from 20 to 193 mg/L with an average 65.5 mg/L. Nitrate exceeded the permissible limits of WHO and Jordanian standards in 69 and 54 % of the NO3 samples, respectively. The modified DRASTIC model was validated using nitrate concentration. Results showed a good match between nitrate concentrations level and the groundwater vulnerability classes.
Keywords: Groundwater vulnerability; Ramtha wastewater treatment plant; DRASTIC; Geographic Information System; Nitrate

In the present study, the geochemical characteristics of groundwater and drinking water quality has been studied. 24 groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, carbonate, bicarbonate, chloride, sulphate, nitrate, calcium, magnesium, sodium, potassium and total hardness. The results were evaluated and compared with WHO and BIS water quality standards. The studied results reveal that the groundwater is fresh to brackish and moderately high to hard in nature. Na and Cl are dominant ions among cations and anions. Chloride, calcium and magnesium ions are within the allowable limit except few samples. According to Gibbs diagram, the predominant samples fall in the rock–water interaction dominance and evaporation dominance field. The piper trilinear diagram shows that groundwater samples are Na–Cl and mixed CaMgCl type. Based on the WQI results majority of the samples are falling under excellent to good category and suitable for drinking water purposes.
Keywords: Gibbs and Piper diagram; Groundwater quality; Anna Nagar; Part of Chennai city

Groundwater vulnerability to pollution mapping of Ranchi district using GIS by R. Krishna; J. Iqbal; A. K. Gorai; G. Pathak; F. Tuluri; P. B. Tchounwou (345-358).
Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table (D), net recharge (R), aquifer media (A), soil media (S), topography or slope (T), impact of vadose zone (I) and hydraulic Conductivity(C)] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.
Keywords: Groundwater vulnerability; Ranchi; DRASTIC; Sensitivity analysis; GIS

The qanat of Algerian Sahara: an evolutionary hydraulic system by Boualem Remini; Bachir Achour; Jean Albergel (359-366).
This article discusses for the first time a study on the connection and interconnection of qanats located in the Algerian Sahara. During the missions in the oases of Touat and Gourara in 2009, 2010 and 2011, we have been impressed by the complexity of the network of water distribution. The seguias of differents sections take all the senses. Connections are made between qanats to ensure water supply to each owner. In this study, we identified nine models for connecting qanats.
Keywords: Qanat; Seguia; Network; Distribution; Connection

This paper examines land use policy and agricultural water management in Africa from 1962 to 2011. For this purpose, data were gathered from Food and Agriculture Organization of the United Nations (FAO) and the World Bank Group. Using the FAO database, ten indices were selected: permanent crops to cultivated area (%), rural population to total population (%), total economically active population in agriculture to total economically active population (%), human development index, national rainfall index (mm/year), value added to gross domestic product by agriculture (%), irrigation water requirement (mm/year), percentage of total cultivated area drained (%), difference between national rainfall index and irrigation water requirement (mm/year), area equipped for irrigation to cultivated area or land use policy index (%). These indices were analyzed for all 53 countries in the study area and the land use policy index was estimated by two different formulas. The results show that value of relative error is <20 %. In addition, an average index was calculated using various methods to assess countries’ conditions for agricultural water management. Ability of irrigation and drainage systems was studied using other eight indices with more limited information. These indices are surface irrigation (%), sprinkler irrigation (%), localized irrigation (%), spate irrigation (%), agricultural water withdrawal (10 km3/year), conservation agriculture area as percentage of cultivated area (%), percentage of area equipped for irrigation salinized (%), and area waterlogged by irrigation (%). Finally, tendency of farmers to use irrigation systems for cultivated crops has been presented. The results show that Africa needs governments’ policy to encourage farmers to use irrigation systems and raise cropping intensity for irrigated area.
Keywords: Africa; Agricultural water management; Irrigation; Land use policy index; Macroeconomic policies; Optimum decision

The decolourisation of Methyl Orange (MO) and Bismarck Brown (BB) by crude peroxidase from Armoracia rusticana (Horseradish) was studied by varying different reaction parameters. The pH of the reaction mixture, initial dye concentration, amount of enzyme and hydrogen peroxide concentration were optimised for ambient temperatures (30 ± 2 °C). The optimum pH for decolourisation was 4.0 (72.95 %) and 3.0 (79.24 %) for MO and BB, respectively. Also it was found that the Chemical Oxygen Demand of the enzyme-treated sample was significantly lower than that of the untreated controls for both dyes. The addition of a complex iron salt like Ferric EDTA was found to enhance the decolourisation of both dyes at pH 6.0, showing an increase of 8.69 % and 14.17 % in the decolourisation of MO and of BB, respectively. The present study explores the potential of crude peroxidase from horseradish to decolourise representative monoazo and diazo dyes, MO and BB, respectively. An attempt has been made to utilise a crude enzyme with appreciable activity obtained after minimal processing for the decolourisation of the aforesaid dyes. The findings of this study would find application in the enzymatic treatment of wastewater containing azo dyes.
Keywords: Peroxidase; Decolourisation; Azo dyes; Armoracia rusticana ; Ferric salt

Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions by Mohd Azmier Ahmad; Norhidayah Ahmad; Olugbenga Solomon Bello (407-423).
Mesoporous-activated carbon from durian seed (DSAC) was prepared; it was used as adsorbent for the removal of methyl red (MR) dye from aqueous solution. Textural and adsorptive characteristics of activated carbon prepared from raw durian seed (DS), char durian seed (char DS) and activated durian seed (DSAC) were studied using scanning electron microscopy, Fourier transform infra red spectroscopy, proximate analysis and adsorption of nitrogen techniques, respectively. Acidic condition favors the adsorption of MR dye molecule by electrostatic attraction. The maximum dye removal was 92.52 % at pH 6. Experimental data were analyzed by eight model equations: Langmuir, Freundlich, Temkin, Dubinin–Radushkevich, Radke–Prausnitz, Sips, Vieth–Sladek and Brouers–Sotolongo isotherms and it was found that the Freundlich isotherm model fitted the adsorption data most. Adsorption rate constants were determined using pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion and Avrami kinetic model equations. The results clearly showed that the adsorption of MR dye onto DSAC followed pseudo-second-order kinetic model. Both intraparticle and film diffusion were involved in the adsorption process. The mean energy of adsorption calculated from D–R isotherm confirmed the involvement of physical adsorption. Thermodynamic parameters were obtained and it was found that the adsorption of MR dye onto DSAC was an endothermic and spontaneous process at the temperatures under investigation.
Keywords: Durian seeds; Methyl red dye; Adsorption; Endothermic; Spontaneous