Mineralium Deposita (v.53, #3)

Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet by MingJian Cao; KeZhang Qin; GuangMing Li; Noreen J. Evans; Brent I.A. McInnes; JinXiang Li; JunXing Zhao (299-309).
Arc magmas are more oxidized than mid-ocean ridge basalts; however, there is continuing debate as to whether this higher oxidation state is inherited from the source magma or developed during late-stage magmatic differentiation processes. Well-constrained Late Jurassic to Early Cretaceous arc-related intermediate to felsic rocks derived from distinct magma sources provide us with a good opportunity to resolve this enigma. A series of granitoids from the western Central Lhasa subterrane were analyzed for whole-rock magnetic susceptibility, Fe2O3/FeO ratios, and trace elements in zircon. Compared to Late Jurassic samples (1.8 ± 2.0 × 10−4 emu g−1 oe−1, Fe3+/Fetotal = 0.32 ± 0.07, zircon Ce4+/Ce3+* = 15.0 ± 13.4), Early Cretaceous rocks show higher whole-rock magnetic susceptibility (5.8 ± 2.5 × 10−4 emu g−1 oe−1), Fe3+/Fetotal ratios (0.43 ± 0.04), and zircon Ce4+/Ce3+* values (23.9 ± 22.3). In addition, positive correlations among whole-rock magnetic susceptibility, Fe3+/Fetotal ratios, and zircon Ce4+/Ce3+* reveal a slight increase in oxidation state from fO2 = QFM to NNO in the Late Jurassic to fO2 = ∼NNO in the Early Cretaceous. Obvious linear correlation between oxidation indices (whole-rock magnetic susceptibility, zircon Ce4+/Ce3+*) and source signatures (zircon εHf(t), TDM C ages) indicates that the oxidation state was predominantly inherited from the source with only a minor contribution from magmatic differentiation. Thus, the sources for both the Late Jurassic and Early Cretaceous rocks were probably influenced by mantle wedge-derived magma, contributing to the increased fO2. Compared to ore-forming rocks at giant porphyry Cu deposits, the relatively low oxidation state (QFM to NNO) and negative εHf(t) (−16 to 0) of the studied granitoids implies relative infertility. However, this study demonstrates two potential fast and effective indices (fO2 and εHf(t)) to evaluate the fertility of granitoids for porphyry-style mineralization. In an exploration context for the west Central Lhasa subterrane, features indicative of potential fertility might include more oxidized, positive εHf(t), young rocks (<130 Ma).
Keywords: Oxidation state; Magnetic susceptibility; Fe3+/Fetotal ratios; Zircon Ce4+/Ce3+*; Central Lhasa subterrane

The Lala Fe-Cu deposit is one of the largest iron oxide-copper-gold (IOCG) deposits in the Kangdian copper belt, southwest China. The paragenetic sequence of the Lala deposit includes six hydrothermal stages: pre-ore pervasive Na alteration (I); magnetite stage with K-feldspar and apatite (II); polymetallic disseminated/massive magnetite-sulfide stage (III); banded magnetite-sulfide stage (IV); sulfide vein stage (V); and late quartz-carbonate vein stage (VI). Fifteen molybdenite separates from stages III to VI were analyzed for Re-Os dating. Our new Re-Os data, together with previous studies, identify four distinct hydrothermal events at the Lala deposit. Molybdenite from the stage III disseminated to massive chalcopyrite-magnetite ores yielded a weighted average Re-Os age of 1306 ± 8 Ma (MSWD = 1.1, n = 6) which represents the timing of main ore formation. Molybdenite from the stage IV-banded magnetite-chalcopyrite ores yielded a weighted average Re-Os age of 1086 ± 8 Ma (MSWD = 2.2, n = 7), i.e., a second ore-forming event. Molybdenite from the stage V sulfide veins yielded a weighted average Re-Os age of 988 ± 8 Ma (MSWD = 1.3, n = 7) which represents the timing of a third hydrothermal event. Molybdenite from the quartz-carbonate veins (stage VI) yielded a weighted average Re-Os age at 835 ± 4 Ma (MSWD = 0.66, n = 10) and documented the timing of a late hydrothermal event. Our results indicate that the Lala deposit formed during multiple, protracted mineralization events over several hundred million years. The first three Mesoproterozoic mineralization events are coeval with intra-continental rifting (breakup of the supercontinent Nuna) and share a temporal link to other IOCG-style deposits within the Kangdian Copper Belt, and the last Neoproterozoic hydrothermal event is coeval with the Sibao orogeny which culminated with the amalgamation of the Yangtze Block with the Cathaysia Block at 860–815 Ma.
Keywords: Fe oxide-Cu-Au deposit; Multiple episodes of mineralization; Molybdenite Re-Os dating; Lala deposit

Native gold from the Inagli Pt–Au placer deposit (the Aldan Shield, Russia): geochemical characteristics and implications for possible bedrock sources by Tatyana V. Svetlitskaya; Peter A. Nevolko; Vladislav V. Kolpakov; Nadezhda D. Tolstykh (323-338).
The Inagli alluvial Pt–Au placer deposit in the Republic of Sakha (Yakutia), Russia, is linked to the Inagli massif, one of the several Uralian–Alaskan-type alkaline-ultrabasic complexes in the Aldan Shield. Gold from the placer is heterogeneous in composition and is represented by three types. Type 1 gold is the most abundant and is characterized by simple Au–Ag alloys with 4–34 wt% Ag, low Cu (up to 0.08 wt%) and negligible Hg, Pt, and Pd contents, and silver–tellurium sulfosalts (Ag–Cu–Te–S–As compounds) in the inclusion suite. Silicate inclusions are biotite, K-feldspar, Fe–Mg amphibole, chlorite, plagioclase, Fe–Mg pyroxene, zircon, and titanite. Distinctive features of this gold type are most similar to those derived from low-sulfidation systems linked to iron oxide copper–gold or iron skarn types of mineralization. The bedrock source of type 1 gold could be related with monzonite to syenite intrusions surrounding the Inagli massif. Distinctive features of type 2 gold include a wide discontinuous range of Ag content (1–18 wt%), elevated Cu (up to 0.5 wt%), and occasional Pd (up to 0.3 wt%) levels, non-detectable Pt and Hg contents, and rare inclusions of simple sulfides (digenite, pyrrhotite) and Na amphibole. Type 3 gold is distinguished by a narrow range in Ag content (5–8 wt%), elevated Hg (0.5–1 wt%) contents, negligible Cu, Pt and Pd levels, and Au–Pb compounds + K-feldspar inclusions. Microchemical characteristics of type 2 and type 3 gold are interpreted as suggestive of an alkaline–magmatic-related fluid. Based on the grain morphology and microchemical signatures, potential bedrock sources for both gold types could be related to the numerous alkaline veins and potassic alteration zones within the dunite core. A comparison of the Inagli and the Kondyor placer gold allows to generate distinctive generic signatures for gold from Uralian–Alaskan-type alkaline–ultrabasic complexes in the Aldan Shield.
Keywords: Placer gold; Gold morphology; Gold composition; Microchemical characterization; Inagli; Aldan Shield; Russia

Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu area, southwestern China by Chunxia Xu; Runsheng Yin; Jiantang Peng; James P. Hurley; Ryan F. Lepak; Jianfeng Gao; Xinbin Feng; Ruizhong Hu; Xianwu Bi (339-352).
The Lanuoma and Cuona sediment-hosted Pb-Zn deposits hosted by Upper Triassic limestone and sandstone, respectively, are located in the Changdu area, SW China. Mercury concentrations and Hg isotopic compositions from sulfide minerals and potential source rocks (e.g., the host sedimentary rocks and the metamorphic basement) were investigated to constrain metal sources and mineralization processes. In both deposits, sulfide minerals have higher mercury (Hg) concentrations (0.35 to 1185 ppm) than the metamorphic basement rocks (0.05 to 0.15 ppm) and sedimentary rocks (0.02 to 0.08 ppm). Large variations of mass-dependent fractionation (3.3‰ in δ202Hg) and mass-independent fractionation (0.3‰ in Δ199Hg) of Hg isotopes were observed. Sulfide minerals have Hg isotope signatures that are similar to the hydrothermal altered rocks around the deposit, and similar to the metamorphic basement, but different from barren sedimentary rocks. The variation of ∆199Hg suggests that Hg in sulfides was mainly derived from the underlying metamorphic basement. Mercury isotopes could be a geochemical tracer in understanding metal sources in hydrothermal ore deposits.
Keywords: Mercury isotope; Geochemical tracer; Sediment-hosted lead-zinc deposit; Changdu area

Origin of sulfur and crustal recycling of copper in polymetallic (Cu-Au-Co-Bi-U ± Ag) iron-oxide-dominated systems of the Great Bear Magmatic Zone, NWT, Canada by P. Acosta-Góngora; S.A. Gleeson; I.M. Samson; L. Corriveau; L. Ootes; S.E. Jackson; B.E. Taylor; I. Girard (353-376).
The Great Bear Magmatic Zone, in northwest Canada, contains numerous polymetallic mineral occurrences, prospects, and deposits of the iron oxide copper-gold deposit (IOCG) family. The mineralization is hosted by the Treasure Lake Group and igneous rocks of the Great Bear arc and was deposited concomitantly with the arc magmatism (ca. 1.88 to 1.87 Ga). In situ δ 34S (n = 48) and δ 65Cu (n = 79) analyses were carried out on ore-related sulfides from a number of these systems. The δ 34S values mainly vary between 0 and +5‰, consistent with derivation of sulfur from the mantle. Lower δ 34S values (−7.7 to +1.4‰) from the Sue-Dianne breccia may indicate SO2 disproportionation of a magmatic hydrothermal fluid. The δ 65Cu values vary between −1.2 and −0.3‰, and are lower than the igneous δ 65Cu range of values (0.0 ± 0.27‰). The S and Cu isotopic data are decoupled, which suggests that Cu (and possibly some S) was dissolved and remobilized from supracrustal rocks during early stages of alteration (e.g., sodic alteration) and then precipitated by lower temperature, more oxidizing fluids (e.g., Ca-Fe-K alteration). A limited fluid inclusion dataset and δ 13C and δ 18O values are also presented. The δ 18Ofluid values are consistent with a magmatic origin or a host-rock equilibrated meteoric water source, whereas the δ 13Cfluid values support a marine carbonate source. Combined, the S and Cu isotopic data indicate that while the emplacement of the Great Bear magmatic bodies may have driven fluid convection and may be the source of fluids and sulfur, metals such as Cu could have been recycled from crustal sources.
Keywords: Great Bear Magmatic Zone; Iron oxides; Copper; Gold; Metal sources; Copper isotopes

The Hashitu porphyry molybdenum deposit is located in the Great Hinggan Range Cu-Mo-Pb-Zn-Ag polymetallic metallogenic province of NE China, in which the Mo-bearing quartz veins are hosted in approximately coeval granites and porphyries. The deposit contains more than 100 Mt of ore with an average grade of 0.13 wt.% Mo. This well-preserved magmatic-hydrothermal system provides an excellent opportunity to determine the source of the molybdenum, the evolution of the hydrothermal fluids and the controls on molybdenite precipitation in a potentially important but poorly understood metallogenic province. Studies of fluid inclusions hosted in quartz veins demonstrate that the Hashitu hydrothermal system evolved to progressively lower pressure and temperature. Mineralogical and fluid inclusion analyses and physicochemical calculations suggest that molybdenite deposition occurred at a temperature of 285 to 325 °C, a pressure from 80 to 230 bars, a pH from 3.5 to 5.6, and a ∆log fO2 (HM) of −3.0, respectively. Results of multiple isotope (O, H, S, Mo, and Pb) analyses are consistent in indicating a genetic relationship between the ore-forming fluids, metals, and the Mesozoic granitic magmatism (i.e., δ 18OH2O from +1.9 to +9.7‰, δDH2O from −106 to −87‰, δ 34SH2S from +0.3 to +3.9‰, δ 98/95Mo from 0 to +0.37‰, 206Pb/204Pb from 18.2579 to 18.8958, 207Pb/204Pb from 15.5384 to 15.5783, and 208Pb/204Pb from 38.0984 to 42.9744). Molybdenite deposition is interpreted to have occurred from a low-density magmatic-hydrothermal fluid in response to decreases in temperature, pressure, and fO2.
Keywords: Fluid inclusions; Mo isotopes; Porphyry Mo deposits; Hashitu; Northeast China

Uranium-lead dating of hydrothermal zircon and monazite from the Sin Quyen Fe-Cu-REE-Au-(U) deposit, northwestern Vietnam by Xiao-Chun Li; Mei-Fu Zhou; Wei Terry Chen; Xin-Fu Zhao; MyDung Tran (399-416).
The Sin Quyen deposit in northwestern Vietnam contains economic concentrations of Cu, Au and LREE, and sub-economic concentration of U. In this deposit, massive and banded replacement ores are hosted in Neoproterozoic metapelite. The paragenetic sequence includes sodic alteration (stage I), calcic-potassic alteration and associated Fe-REE-(U) mineralization (stage II), Cu-Au mineralization (stage III), and sulfide-(quartz-carbonate) veins (stage IV). The Sin Quyen deposit experienced an extensive post-ore metamorphic overprint, which makes it difficult to precisely determine the mineralization age. In this study, zircon and monazite U-Pb geochronometers and the Rb-Sr isochron method are used to constrain the timing of mineralization. Zircon grains in the ore are closely intergrown or texturally associated with hydrothermal minerals of stage II (e.g., garnet, allanite, and hedenbergite). They may contain primary fluid inclusions and display irregular zoning in cathodoluminescence (CL) images. Zircon grains are rich in U (688 to 2902 ppm) and poor in Th (0.2 to 2.9 ppm). Their δ18OV-SMOW values range from 11.9 to 14.0‰, higher than those of typical magmatic zircon. These textural and compositional features imply that zircon precipitated from 18O- and U-rich hydrothermal fluids, coeval with the minerals of stage II. Monazite occurs in close association with stage II magnetite and allanite and has low contents of Th (<2700 ppm), indicative of a hydrothermal origin. Hydrothermal zircon and monazite have indistinguishable U-Pb ages of 841 ± 12 and 836 ± 18 Ma, respectively, representing the timing of Fe-REE mineralization. There is no direct isotopic constraint on the timing of the Cu-Au mineralization, but geological observations suggest that the Cu-Au and Fe-REE ores most likely formed within a single evolved hydrothermal process. In the plot of 87Rb/86Sr vs. 87Sr/86Sr, the composition of bulk-ore and biotite separates from ore lie along a reference line for 30 Ma, which is consistent with the timing of metamorphism in the region. The mineralization age of the Sin Quyen deposit falls within the overall age range (740 to 860 Ma) of the regional Neoproterozoic igneous rocks. This temporal linkage, in combination with the magmatic-like sulfur isotopes of sulfide minerals (δ34SV-CDT = −0.8 to 3.1), indicates that the mineralization may have a close genetic association with the Neoproterozoic igneous activity.

Origin of native copper in the Paraná volcanic province, Brazil, integrating Cu stable isotopes in a multi-analytical approach by Sérgio Benjamin Baggio; Léo Afraneo Hartmann; Marina Lazarov; Hans-Joachim Massonne; Joachim Opitz; Thomas Theye; Tillmann Viefhaus (417-434).
Different hypotheses exist on the origin of native copper mineralization in the Paraná volcanic province that invoke magmatic, late magmatic, or hydrothermal events. The average copper content in the host basalts is ~200 ppm. Native copper occurs as dendrites in cooling joints, fractures, and cavities within amygdaloidal crusts. Cuprite, tenorite, chrysocolla, malachite, and azurite occur in breccias at the top of the lava flows. Chemical analyses, X-ray diffraction, Raman spectrometry, electron microprobe analyses, LA-ICP-MS, and Cu isotope analyses were used to evaluate the origin of native copper in the volcanic province. Copper contents in magnetite of the host basalt are close to 1 wt.%, whereas clinopyroxene contains up to 0.04 wt.% Cu. Cretaceous hydrothermal alteration of magnetite and clinopyroxene released copper to generate hydrothermal copper mineralization. The isotopic composition of the native copper in the Paraná volcanic province varies from −0.9‰ in the southeastern portion (Rio Grande do Sul state) to 1.9‰ in the central portion (Paraná state) of the province. This study supports a hydrothermal origin followed by supergene enrichment for native copper in the Paraná volcanic province.
Keywords: Paraná volcanic province; Native copper; Copper isotopes; Hydrothermal mineralization

Geology, S–Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb–Pb–Zn–Ag deposit in Southern Tibet: implications for multiple mineralization events at Zhaxikang by Xiang Sun; Youye Zheng; Franco Pirajno; T. Campbell McCuaig; Miao Yu; Shenlan Xia; Qingjie Song; Huifang Chang (435-458).
Several Au, Sb, Sb–Au, Pb–Zn, and Sb–Pb–Zn–Ag deposits are present throughout the North Himalaya in southern Tibet, China. The largest Sb–Pb–Zn–Ag deposit is Zhaxikang (18 Mt at 0.6 wt% Sb, 2.0 wt% Pb, 3.5 wt% Zn, and 78 g/t Ag). Zhaxikang veins are hosted within N–S trending faults, which crosscut the Early–Middle Jurassic Ridang Formation consisting of shale interbedded with sandstone and limestone deposited on a passive continental margin. Ore paragenesis indicates that Zhaxikang mineralization occurred in two main phases composed of six total stages. The initial phase was characterized by assemblages of fine-grained Mn–Fe carbonate + arsenopyrite + pyrite + sphalerite (stage 1), followed by relatively coarse-grained Mn–Fe carbonate + Fe-rich sphalerite + galena + pyrite (stage 2). The second phase was marked by assemblages of quartz + pyrite + Fe-poor sphalerite and Ag-rich galena + tetrahedrite + sericite (stage 3), quartz + Sb–Pb sulfosalt minerals mainly composed of boulangerite and jamesonite (stage 4), quartz + stibnite ± cinnabar (stage 5), and quartz ± calcite (stage 6). Sulfides of stage 2 have δ34SV–CDT of 8.4–12.0‰, 206Pb/204Pb ratios of 19.648 to 19.659, 207Pb/204Pb ratios of 15.788 to 15.812, and 208Pb/204Pb ratios of 40.035 to 40.153. Sulfides of stage 3 have similar δ34SV–CDT of 6.1–11.2‰ and relatively more radiogenic lead isotopes (206Pb/204Pb = 19.683–19.792). Stage 4 Sb–Pb sulfosalt minerals have δ34SV–CDT of 5.0–7.2‰ and even more radiogenic lead (206Pb/204Pb = 19.811–19.981). By contrast, stibnite of stage 5 has δ34SV–CDT of 4.5–7.8‰ and less radiogenic lead (206Pb/204Pb = 18.880–18.974). Taken together with the geological observations that the Pb–Zn-bearing Mn–Fe carbonate veins were crosscut by various types of quartz veins, sphalerite and galena of stage 2 underwent dissolution and remobilization, and that Sb–Pb(−Fe) sulfosalts formed at the expense of Pb from stage 2 galena and of Fe from stage 2 sphalerite, we argue that the early Pb–Zn veins were overprinted by later Sb-rich fluids. Stage 2 fluids were likely acidic and oxidized and leached lead from high-grade metamorphic rocks of the Greater Himalayan crystalline complex (GHC) and sulfur from reduced rocks, such as slate of the Ridang Formation, along N–S trending faults, leading to precipitation of Pb–Zn sulfides and Mn–Fe carbonate and formation of solution collapse breccias. Later Sb-rich fluids leached Pb from the GHC and the pre-existing sulfides and deposited Fe-poor sphalerite, Ag-rich galena, tetrahedrite, Sb–Pb sulfosalts, and stibnite in quartz veins that cut pre-existing Pb–Zn-bearing Mn–Fe carbonate veins. The Sb-rich fluids also likely leached Pb from Early Cretaceous gabbro and formed stibnite at shallow levels where early Pb-Zn-bearing Mn-Fe carbonate veins are absent. A sericite 40Ar–39Ar plateau age of 17.9 ± 0.5 Ma from stage 3 veins represents the timing of the onset of stage 3 mineralization.
Keywords: Sb–Pb–Zn–Ag veins; S-Pb isotopes; N–S trending rift; Mineralization age; North Himalaya