Mineralium Deposita (v.40, #5)

Giant mineral deposits and underlying Earth processes by Adrian Joseph Boyce; Iain McDonald (449-450).

“His mind was like a soup dish—wide and shallow; ...” - Irving Stone on William Jennings Bryan A compilation of the Sr-isotopic stratigraphy of the Bushveld Complex, shows that the evolution of the magma chamber occurred in two major stages. During the lower open-system Integration Stage (Lower, Critical and Lower Main Zone), there were numerous influxes of magma of contrasting isotopic composition with concomitant mixing, crystallisation and deposition of cumulates. Larger influxes correspond to the boundaries of the zones and sub-zones and are marked by sustained isotopic shifts, major changes in mineral assemblages and development of unconformities. During the upper, closed system Differentiation Stage (Upper Main Zone and Upper Zone), there were no major magma additions (other than that which initiated the Upper Zone), and the thick magma layers evolved by fractional crystallisation. The Lower and Lower Critical Zones are restricted to a belt that runs from Steelpoort and Burgersfort in the northeast, to Rustenburg and Northam in the west and an outlier of the Lower and Lower Critical Zone, up to the LG4 chromitite layer, in the far western extension north of Zeerust. It is only in these areas that thick harzburgite and pyroxenite layers are developed and where chromitites of the Lower Critical Zone occur. These chromitites include the economically important c. 1 m thick LG6 and MG1 layers exposed around both the Eastern and Western lobes of the Bushveld Complex. The Upper Critical Zone has a greater lateral extent than the Lower Critical Zone and overlies but also onlaps the floor-rocks to the south of the Steelpoort area . The source of the magmas also appears to have been towards the south as the MG chromitite layers degrade and thin northward whereas the LG layers are very well represented in the North and degrade southward. Sr and Os isotope data indicate that the major chromitite layers including the LG6, MG1 and UG2 originated in a similar way. Extremely abrupt and stratigraphically restricted increases in the Sr isotope ratio imply that there was massive contamination of intruding melt which “hit the roof” of the chamber and incorporated floating granophyric liquid which forced the precipitation of chromite (Kruger 1999; Kinnaird et al. 2002). Therefore, each chromitite layer represents the point at which the magma chamber expanded and eroded and deformed its floor. Nevertheless, this was achieved by in situ contamination by roof-rock melt of the intruding Critical Zone liquids that had an orthopyroxenitic to noritic lineage. The Main Zone is present in the Eastern and Western lobes of the Bushveld Complex where it overlies the Critical Zone, and onlaps the floor-rocks to the south, and the north where it is also the basal zone in the Northern lobe. The new magma first intruded the Northern lobe north of the Thabazimbi–Murchison Lineament, interacted with the floor-rocks, incorporated sulphur and precipitated the “Platreef” along the floor-rock contact before flowing south into the main chamber. This exceptionally large influx of new magma then eroded an unconformity on the Critical Zone cumulate pile, and initiated the Main Zone in the main chamber by precipitating the Merensky Reef on the unconformity. The Upper Zone magma flowed into the chamber from the southern “Bethal” lobe as well as the TML. This gigantic influx eroded the Main Zone rocks and caused very large-scale unconformable relationships, clearly evident as the “Gap” areas in the Western Bushveld Complex. The base of this influx, which is also coincident with the Pyroxenite Marker and a troctolitic layer in the Northern lobe, is the petrological and stratigraphic base of the Upper Zone. Sr-isotope data show that all the PGE rich ores (including chromitites) are related to influxes of magma, and are thus related to the expansion and filling of the magma chamber dominantly by lateral expansion; with associated transgressive disconformities onto the floor-rocks coincident with major zone changes. These positions in the stratigraphy are marked by abrupt changes in lithology and erosional features over which succeeding lithologies are draped. The outcrop patterns and the concordance of geochemical, isotopic and mineralogical stratigraphy, indicate that during crystallisation, the Bushveld Complex was a wide and shallow, lobate, sill-like sheet, and the rock-strata and mineral deposits are quasi-continuous over the whole intrusion.
Keywords: Bushveld Complex; Differentiation; Layered intrusion; Stratigraphy; Magma influxes; Magma mixing; Unconformities; Chromitite; PGE mineralisation

Timing of Uralian orogenic gold mineralization at Kochkar in the evolution of the East Uralian granite-gneiss terrane by Jochen Kolb; Sven Sindern; Alexander F. M. Kisters; F. Michael Meyer; Stephan Hoernes; Jens Schneider (473-491).
Gold mineralization at Kochkar (Urals, Russia) is hosted mainly by quartz lodes, which developed at lithological contacts between mafic dikes and granitoids of the Plast massif during late Carboniferous to early Permian, regional E–W compression in the East Uralian Zone (EUZ). The alteration mineralogy in mafic dikes comprises biotite, actinolite, albite, K-feldspar, quartz, epidote, tourmaline, sericite, pyrite, arsenopyrite, chalcopyrite, sphalerite, fahlores, galena, bismuthinite, and gold, and in Plast granitoids quartz, sericite, calcite, epidote, and ore minerals. Geochemically, an enrichment of Si, K, Rb, Ba, S, base metals, W, and Au can be observed. The ore fluid had δ18O values between 8.2‰ and 9.5‰ typical for metamorphic or deep magmatic fluids. The tectonometamorphic evolution of the EUZ is marked by peak metamorphic conditions at 635±40°C and 5–6 kbar through 500±20°C during gold mineralization, and 300–350°C and 2–3 kbar. The last event was dated on a late, barren quartz vein formed during greenschist facies metamorphism at 265±3 Ma by the Rb–Sr method. Fluids related to this overprint had a δ18O value of 5.2‰ and an initial 87Sr/86Sr ratio of 0.70685 indicating that they are largely equilibrated with metamorphic lithologies of the EUZ. The Plast granitoids and the adjacent Borisov granite, which was dated at 358±23 Ma (U–Pb zircon age), have an adakitic character. This, together with the arc-signature of the mafic dikes, supports the setting of the EUZ within the Valerianovsky continental arc. Eastward subduction of the Uralian Ocean below this arc began during the late Devonian to early Carboniferous. Between 320 and 265 Ma, the oblique closure of the ocean resulted in doming of granitoid massifs in a sinistral transpressional regime, subsequent retrograde gold mineralization during E–W compression and a later greenschist facies overprint. This long-lasting retrograde evolution of the EUZ was caused by the lack of postcollisional collapse. Heat for a “deep-later" type of metamorphism and triggering the auriferous fluid system was supplied by radiogenic heating of an overthickened crust. The greenschist facies overprint at Kochkar and coeval crustal melting in the EUZ was additionally initiated by local external heating of the terrane. This could have been caused by syn- to postcollisional slab rollback or delamination resulting in magmatic underplating of the EUZ, which postdates orogenic gold mineralization at Kochkar. The tectonic interpretation of the EUZ indicates that gold mineralization at Kochkar formed in a mid-crustal environment of a continental magmatic arc at the cessation of active subduction predating post orogenic plutonism.
Keywords: Kochkar; Orogenic gold; Ural; East Uralian Zone

A large scale Proterozoic breccia system consisting of numerous individual breccia bodies, collectively known as Wernecke Breccia, occurs in north-central Yukon Territory, Canada. Breccias cut Early Proterozoic Wernecke Supergroup sedimentary rocks and occur throughout the approximately 13 km thick deformed and weakly metamorphosed sequence. Iron oxide–copper–gold ± uranium ± cobalt mineralization is associated with the breccia bodies and occurs as veins and disseminations within breccia and surrounding rocks and locally forms the breccia matrix. Extensive sodic and potassic metasomatic alteration occurs within and around breccia bodies and is overprinted by pervasive calcite and dolomite/ankerite, and locally siderite, alteration, respectively. Multiple phases of brecciation, alteration and mineralization are evident. Breccia bodies are spatially associated with regional-scale faults and breccia emplacement made use of pre-existing crustal weaknesses and permeable zones. New evidence indicates the presence of metaevaporitic rocks in lower WSG that may be intimately related to breccia formation. No evidence of breccia-age magmatism has been found to date.
Keywords: Wernecke Breccia; IOCG; Proterozoic; Iron oxide–copper–gold; Yukon

The Central Andes host some of the world’s largest porphyry copper deposits. The economic viability of these deposits is dependent on the size and quality of their supergene enrichment blanket. Published models that have strongly influenced exploration policy suggest that supergene enrichment ceased at 14 Ma due to an increase in aridity. Here we discuss these models using published geochronological, geomorphological and geological data. Geochronological data indicate that supergene oxidation and enrichment has been active between 17 and 27°S across the forearc of northern Chile and southern Peru from 44 to 6 Ma, and on the Bolivian Altiplano and Eastern Cordillera of Argentina from 11 Ma to present. There is evidence for cessation at 20, 14 and 6 Ma. However, a major problem is that as more geochronological data become available the age ranges and periods of enrichment increase. This suggests that the full spectrum of enrichment ages may not have been sampled. The relationship between supergene enrichment and the age of regional pediplain surface development is not well constrained. Only in two areas have surfaces related to enrichment been directly dated (southern Peru and south of 26°S in Chile) and suggest formation post 14 Ma. Sedimentological data indicate that a fluctuating arid/semi-arid climate prevailed across the Atacama Desert until between 4 and 3 Ma, climatic conditions that are thought to be favourable for supergene enrichment. The balance between uplift, erosion, burial and sufficient water supply to promote enrichment is complex. This suggests that a simple model for controlling supergene enrichment is unlikely to be widely applicable in northern Chile. General models that involve climatic desiccation at 14 Ma related to rainshadow development and/or the presence of an ancestral cold-upwelling Humboldt Current are not supported by the available geological evidence. The integration of disparate sedimentological, geomorphological and supergene age data will be required to fully understand the controls on and distribution of supergene oxidation and enrichment in the Central Andes.

The northern lobe of the Bushveld Complex is currently a highly active area for platinum-group element (PGE) exploration. This lobe hosts the Platreef, a 10–300-m thick package of PGE-rich pyroxenites and gabbros, that crops out along the base of the lobe to the north of Mokopane (formerly Potgietersrus) and is amenable to large-scale open pit mining along some portions of its strike. An early account of the geology of the deposit was produced by Percy Wagner where he suggested that the Platreef was an equivalent PGE-rich layer to the Merensky Reef that had already been traced throughout the eastern and western lobes of the Bushveld Complex. Wagner’s opinion remains widely held and is central to current orthodoxy on the stratigraphy of the northern lobe. This correlates the Platreef and an associated cumulate sequence that includes a chromitite layer—known as the Grasvally norite-pyroxenite-anorthosite (GNPA) member—directly with the sequence between the UG2 chromitite and the Merensky Reef as it is developed in the Upper Critical Zone of the eastern and western Bushveld. Implicit in this view of the magmatic stratigraphy is that similar Critical Zone magma was present in all three lobes prior to the development of the Merensky Reef and the Platreef. However, when this assumed correlation is examined in detail, it is obvious that there are significant differences in lithologies, mineral textures and chemistries (Mg# of orthopyroxene and olivine) and the geochemistry of both rare earth elements (REE) and PGE between the two sequences. This suggests that the prevailing interpretation of the stratigraphy of the northern lobe is not correct. The “Critical Zone” of the northern lobe cannot be correlated with the Critical Zone in the rest of the complex and the simplest explanation is that the GNPA-Platreef sequence formed from a separate magma, or mixture of magmas. Chilled margins of the GNPA member match the estimated initial composition of tholeiitic (Main Zone-type) magma rather than a Critical Zone magma composition. Where the GNPA member is developed over the ultramafic Lower Zone, hybrid rocks preserve evidence for mixing between new tholeiitic magma and existing ultramafic liquid. This style of interaction and the resulting rock sequences are unique to the northern lobe. The GNPA member contains at least seven sulphide-rich horizons with elevated PGE concentrations. Some of these are hosted by pyroxenites with similar mineralogy, crystallisation sequences and Pd-rich PGE signatures to the Platreef. Chill zones are preserved in the lowest Main Zone rocks above the GNPA member and the Platreef and this suggests that both units were terminated by a new influx of Main Zone magma. This opens the possibility that the Platreef and GNPA member merge laterally into one another and that both formed in a series of mixing/quenching events involving tholeiitic and ultramafic magmas, prior to the main influx of tholeiitic magma that formed the Main Zone.
Keywords: Bushveld Complex; Platreef; Merensky Reef; Stratigraphy; Platinum-group elements

Trace elements in the Merensky Reef and adjacent norites Bushveld Complex South Africa by Nicholas Arndt; George Jenner; Maryse Ohnenstetter; Etienne Deloule; Alan H. Wilson (550-575).
Trace elements were analysed in rocks and minerals from three sections across the Merensky Reef in the Rustenburg Platinum Mine in the Bushveld Complex of South Africa. Whole rocks and separated minerals were analysed by inductively coupled plasma-mass-spectrometer (ICP-MS) and in situ analyses were carried out by ion microprobe and by laser-source ICP-MS. Merensky Reef pyroxenites contain extremely high concentrations of a wide range of trace elements. These include elements incompatible with normal silicate minerals as well as siderophile and chalcophile elements. For major elements and compatible trace elements, the measured concentrations in cumulus phases and the bulk rock compositions are similar. For highly incompatible elements, however, concentrations in bulk rocks are far higher than those measured in the cumulus phases. In situ analyses of plagioclase have far lower concentrations of Th, Zr and rare earth elements than ICP-MS analyses of bulk separates of plagioclase, a difference that is attributed to the presence of trace-element-rich accessory phases in the bulk mineral separates. We used these data to calculate the trace-element composition of the magmas parental to the Merensky Unit and adjacent norites. We argue that there is no reason to assume that the amount of trapped liquid in the Merensky orthopyroxenite was far greater than in the norites and we found that the pyroxenite formed from a liquid with higher concentrations of incompatible trace elements than the liquid that formed the norites. We propose that the Bushveld Complex was fed by magma from a deeper magma chamber that had been progressively assimilating its crustal wall rocks. The magma that gave rise to the Merensky Unit was the more contaminated and unusually rich in incompatible trace elements, and when it entered the main Bushveld chamber it precipitated the unusual phases that characterize the Merensky Reef. The hybrid magma segregated sulphides or platinum-group-element-rich phases during the course of the contamination in the lower chamber. These phases accumulated following irruption into the main Bushveld chamber to form the Merensky ore deposits.
Keywords: Bushveld Merensky reef; Orthomagmatic contamination modelling

Petrology and mineralisation of the southern Platreef: northern limb of the Bushveld Complex, South Africa by Judith A. Kinnaird; D. Hutchinson; L. Schurmann; P. A. M. Nex; Renee de Lange (576-597).
The Platreef, the putative local analogue of the Merensky Reef, forms the floor to the mafic succession in the northern limb of the Bushveld Complex. We define the Platreef as ‘the lithologically variable unit, dominated by pyroxenite, which is irregularly mineralised with PGE, Cu and Ni, between the Transvaal metasedimentary footwall or Archaean basement and the overlying Main Zone gabbronorite’. We define the mineralisation around calcsilicate xenoliths within the Main Zone in the far north of the limb as a ‘Platreef-style‘ mineralisation. The Platreef (ss) has a strike extent of ∼30 km, whereas Platreef-style mineralisation occurs over a strike length of 110 km. The Platreef varies from 400 m thick in the S to <50 m in the N. The overall strike is NW or N, with dips 40–45°W at surface, shallowing down dip, The overall geometry of the southern Platreef appears to have been controlled by irregular floor topography. The maximum thickness of the southern Platreef occurs in two sub-basins on the farms Macalacaskop and Turfspuit. Lithologically, the southern Platreef is heterogeneous and more variable than sectors further north and, although predominantly pyroxenitic, includes dunites, peridotites and norite cycles with anorthosite in the mid to upper portion. Zones of intense serpentinisation may occur throughout the package. Faults offset the strike of the Platreef: a N–S, steeply dipping set is predominant with secondary ENE and ESE sets dipping 50–70°S. The fault architecture was pre-Bushveld and also locally controlled thickening and thinning of the succession. Country rock xenoliths, <1500 m long, are common. On Macalacaskop, these are typically quartzites and hornfelsed banded ironstones, shales, mudstones and siltstones whereas on Turfspruit dolomitic or calcsilicate xenoliths also occur. Sulphides may reach >30 modal% in some intersections. These are dominated by pyrrhotite, with lesser pentlandite and chalcopyrite, minor pyrite and traces of a wide compositional range of sulphides. In the southern sector, mineralised zones have Cu grades of 0.1–0.25% and Ni 0.15–0.36%. Massive sulphides are localised, commonly, but not exclusively towards the contact with footwall metasedimentary rocks. Magmatic sulphides are disseminated or net-textured ranging from a few microns to 2 cm grains of pyrrhotite and pentlandite with chalcopyrite and minor pyrite. Much of the sulphide is associated with intergranular plagioclase, or quartz-feldspar symplectites, along the margins of rounded cumulus orthopyroxenes. The PGEs in the southern sector occur as tellurides, bismuthides, arsenides, antimonides, bismuthoantimonides and complex bismuthotellurides. PGM are rarely included in the sulphides but occur as micron-sized satellite grains around interstitial sulphides and within alteration assemblages in serpentinised zones. The Pt:Pd ratio ∼1 and PGE grade may be decoupled from S and base metal abundance.
Keywords: Platinum-group elements; PGE; Base metals; Platreef; Bushveld Complex

El Galeno and Michiquillay are early to middle Miocene Cu–Au–Mo porphyry-related deposits located in the auriferous Cajamarca district of northern Peru. The El Galeno deposit (486 Mt at 0.57% Cu, 0.14 g/t Au and 150 ppm Mo) is associated with multiple dioritic intrusions hosted within Lower Cretaceous quartzites and shales. Emplacement of the porphyry stocks (17.5–16.5 Ma) in a hanging wall anticline was structurally controlled by oblique faults superimposed on early WNW-trending fold-thrust structures. Early K-feldspar–biotite–magnetite (potassic) alteration was associated with pyrite and chalcopyrite mineralisation. A quartz–magnetite assemblage that occurs at depth has completely replaced potassically altered rocks. Late- and post-mineralisation stocks are spatially and temporally related to weak quartz–muscovite (phyllic) alteration. High Au grades are associated with early intrusive phases located near the centre of the deposit. Highest Cu grades (~0.9% Cu) are mostly associated with a supergene enrichment blanket, whilst high Mo grades are restricted to contacts with the metasedimentary rocks. The Michiquillay Cu–Au–Mo deposit (631 Mt at 0.69% Cu, 0.15 g/t Au, 100–200 ppm Mo) is associated with a Miocene (20.0–19.8 Ma) dioritic complex that was emplaced within the hanging wall of a back thrust fault. The intrusive complex is hosted in quartzites and limestones. The NE-trending deposit is crosscut by NNW-trending prospect-scale faults that influenced both alteration and metal distribution. In the SW and NE of the deposit, potassic alteration zones contain moderate hypogene grades (0.14 g/t Au and 0.8% Cu) and are characterised by chalcopyrite and pyrite mineralisation. The core of the deposit is defined by a lower grade (0.08 g/t Au and 0.57% Cu) phyllic alteration that overprinted early potassic alteration. Michiquillay contains a supergene enrichment blanket of 45–80 m thickness with an average Cu grade of 1.15%, which is overlain by a deep leached cap (up to 150 m). Cu–Au–Mo (El Galeno-Michiquillay) and Au-rich (Minas Conga) deposits in the Cajamarca region are of similar age (early–middle Miocene) and intrusive rock type (dioritic) associations. Despite these geochronological and geochemical similarities, findings from this study suggest variation in metal grade between the hybrid-type and Au-rich deposits result from a combination of physio-chemical factors. These include variations in temperature and oxygen fugacity conditions during hypogene mineralisation resulting in varied sulphide assemblages, host rock type, precipitation of ubiquitous hydrothermal magnetite, and late hydrothermal fluid flow resulting in a well-developed phyllic alteration zone.
Keywords: Northern Peru; Copper; Gold; Miocene; Porphyry