Mineralium Deposita (v.40, #4)

The Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern Sweden, part I: geology by Hans Årebäck; Timothy J. Barrett; Stig Abrahamsson; Pia Fagerström (351-367).
The Kristineberg volcanic-hosted massive sulphide (VMS) deposit, located in the westernmost part of the Palaeoproterozoic Skellefte district, northern Sweden, has yielded 22.4 Mt of ore, grading 1.0% Cu, 3.64% Zn, 0.24% Pb, 1.24 g/t Au, 36 g/t Ag and 25.9% S, since the mine opened in 1941, and is the largest past and present VMS mine in the district. The deposit is hosted in a thick pile of felsic to intermediate and minor mafic metavolcanic rocks of the Skellefte Group, which forms the lowest stratigraphic unit in the district and hosts more than 85 known massive sulphide deposits. The Kristineberg deposit is situated lower in the Skellefte Group than most other deposits. It comprises three main ore zones: (1) massive sulphide lenses of the A-ore (historically the main ore), having a strike length of about 1,400 m, and extending from surface to about 1,200 m depth, (2) massive sulphide lenses of the B-ore, situated 100–150 m structurally above the A-ore, and extending from surface to about 1,000 m depth, (3) the recently discovered Einarsson zone, which occurs in the vicinity of the B-ore at about 1,000 m depth, and consists mainly of Au–Cu-rich veins and heavily disseminated sulphides, together with massive sulphide lenses. On a regional scale the Kristineberg deposit is flanked by two major felsic rock units: massive rhyolite A to the south and the mine porphyry to the north. The three main ore zones lie within a schistose, deformed and metamorphosed package of hydrothermally altered, dominantly felsic volcanic rocks, which contain varying proportions of quartz, muscovite, chlorite, phlogopite, pyrite, cordierite and andalusite. The strongest alteration occurs within 5–10 m of the ore lenses. Stratigraphic younging within the mine area is uncertain as primary bedding and volcanic textures are absent due to strong alteration, and tectonic folding and shearing. In the vicinity of the ore lenses, hydrothermal alteration has produced both Mg-rich assemblages (Mg-chlorite, cordierite, phlogopite and locally talc) and quartz–muscovite–andalusite assemblages. Both types of assemblages commonly contain disseminated pyrite. The sequence of volcanic and ore-forming events at Kristineberg is poorly constrained, as the ages of the massive rhyolite and mine porphyry are unknown, and younging indicators are absent apart from local metal zoning in the A-ores. Regional structural trends, however, suggest that the sequence youngs to the south. The A- and B-ores are interpreted to have formed as synvolcanic sulphide sheets that were originally separated by some 100–150 m of volcanic rocks. The Einarsson zone, which is developed close to the 1,000 m level, is interpreted to have resulted in part from folding and dislocation of the B-ore sulphide sheet, and in part from remobilisation of sulphides into small Zn-rich massive sulphide lenses and late Au–Cu-rich veins. However, the abundance of strongly altered, andalusite-bearing rocks in the Einarsson zone, coupled with the occurrence of Au–Cu-rich disseminated sulphides in these rocks, suggests that some of the mineralisation was synvolcanic and formed from strongly acidic hydrothermal fluids.
Keywords: Volcanic-hosted massive sulphide deposits; Alteration; Kristineberg; Palaeoproterozoic; Skellefte district; Sweden

The Kristineberg massive sulfide deposit is hosted by metamorphosed volcanic and subvolcanic rocks of the Palaeoproterozoic Skellefte Group. The deposit consists of: (1) two main massive sulfide horizons, the A-ores and B-ores, which dip steeply southwards and are separated by 100–150 m; and (2) the Einarsson Zone, a complex interval of Cu–Au-rich ‘stockwork‘ sulfides and small massive sulfide lenses in altered and deformed rocks near the 1,000 m level. The Einarsson Zone occurs some 20–100 m south of the B-ores. There are no definite younging indicators in the mine sequence. In many areas of the mine, the original host rocks are impossible to identify petrographically due to the abundance of secondary minerals such as quartz, chlorite, muscovite, cordierite, andalusite, phlogopite, pyrite and talc, combined with variably schistose fabrics. Application of immobile-element methods to 600 recent whole-rock chemical analyses has, however, allowed the original rock types to be identified and correlated. Rhyolite X lies immediately north of the A-ore, while andesitic to dacitic to rhyodacitic rocks make up the 100–150 m interval between the A-ore and B-ore, and massive rhyolite A lies immediately south of the B-ore. The felsic rocks are mostly of calc-alkaline affinity, excluding rhyolite X, which is transitional. The mine porphyry, which lies north of the A-ore and forms the marginal phase of the synvolcanic Viterliden Intrusive Complex, is compositionally similar to dacite and rhyodacite. Mass changes calculated for all rock types indicate that most of the volcanic rocks in the mine area are strongly depleted in Na and Ca, and have gained variable amounts of Mg and Fe, whereas Si changes range from negative to positive. Gains in Fe and changes in Si are largest within 5–10 m of the massive sulfide lenses. Cordierite-bearing schists of andesitic to felsic compositions that lie between massive sulfide lenses A and B are not as altered. The Einarsson Zone commonly shows large gains in Fe and Mg, while Si shows large gains to large losses. Immobile-element ratios indicate that very different secondary assemblages in the mine, e.g. andalusite–quartz–muscovite and cordierite–chlorite–talc, can be produced from the same precursor volcanic unit, e.g., rhyolite. Conversely, the same secondary mineral assemblage can be produced from different rocks, e.g. weakly altered andesite and strongly altered rhyolite. The common presence of cordierite + andalusite in the mine area, without anthophyllite, is unusual in the alteration systems of volcanic-hosted massive sulfide deposits, and is proposed to have formed by the metamorphic reaction of the synvolcanic alteration minerals kaolinite and chlorite to produce cordierite. Where kaolinite was in excess of chlorite, andalusite was also formed. We propose that highly acidic alteration fluids locally produced high-Al minerals such as kaolinite that either overprinted, or occurred in place of, a more typical sericite–chlorite–quartz alteration assemblage that otherwise formed near the massive sulfide lenses. Application of lithogeochemical methods to the altered, deformed and metamorphosed Kristineberg rocks has identified specific volcanic contacts with massive sulfide potential, and quantified the effects of synvolcanic hydrothermal alteration. Such an approach can increase the effectiveness of mineral exploration in metamorphosed terrains.

The Vaikijaur Cu–Au–(Mo) deposit is located in the ca. 1.88 Ga calc-alkaline Jokkmokk granitoid near the Archaean–Proterozoic palaeoboundary within the Fennoscandian shield of northern Sweden. The Skellefte VMS district lies immediately to the south and the northern Norrbotten Fe-oxide–Cu–Au deposits to the north. The Vaikijaur deposit occupies an area of 2×3 km within the Jokkmokk granitoid and includes stockwork quartz-sulphide veinlets and disseminated chalcopyrite, pyrite, gold, molybdenite, magnetite, and pyrrhotite. Porphyritic mafic dykes were emplaced along fractures in a ring dyke pattern. The Jokkmokk granitoid, dykes, and the mineralized area are foliated, indicating that mineralization predated the main regional deformation. The mineralized area is characterized by strong potassic alteration. Phyllic and propylitic alteration zones are also present. A pyrite-rich inner core is surrounded by a concentric zone with pyrite, chalcopyrite, and gold. Molybdenite is distributed irregularly throughout the chalcopyrite zone. Geophysical data indicate a strongly conductive central zone in the mineralized area bordered by conductive and high magnetic zones. Five high precision Re–Os age determinations for three molybdenite occurrences from outcrop and drill core samples constrain the age of porphyry-style Cu–Au–(Mo) mineralization to between 1889±10 and 1868±6 Ma. A younger molybdenite is associated with a much later metamorphic event at about 1750 Ma. These data suggest that primary porphyry-style mineralization was associated with calc-alkaline magmatism within the Archaean–Proterozoic boundary zone at ca. 1.89–1.87 Ga.
Keywords: Vaikijaur; Re–Os dating; Molybdenite; Northern Sweden; Svecofennian

The northern Norrbotten area in northern Sweden, is an important mining district and hosts several deposits of Fe-oxide Cu-Au-type. One of the best examples of spatially, and possibly genetically, related apatite–iron and copper–gold deposits in the region is at Tjårrojåkka, 50 km WSW of Kiruna. The deposits are hosted by strongly sheared and metamorphosed intermediate volcanic rocks and dolerites and show a structural control. The Tjårrojåkka iron deposit is a typical apatite–iron ore of Kiruna-type and the Tjårrojåkka copper occurrence shows the same characteristics as most other epigenetic deposits in Norrbotten. The host rock has been affected by strong albite and K-feldspar alteration related to mineralisation, resulting in an enrichment of Na, K, and Ba. Fe and V were depleted in the altered zones and added in mineralised samples. REE were enriched in the system, with the greatest addition related to mineralisation. Y was also mobile associated with albite alteration and copper mineralisation. The Tjårrojåkka iron and copper deposits show comparable hydrothermal alteration minerals and paragenesis, which might be a product of common host rock and similarities in ore fluid composition, or overprinting by successive alteration stages. Mineralogy and mineral chemistry of the alteration minerals (apatite, scapolite, feldspars, amphiboles, and biotite) indicate a higher salinity and Ba/K ratio in the fluid related to the alterations in the apatite–iron occurrence than in the copper deposit, where the minerals are enriched in F and S. The presence of hematite, barite, and in SO4 in scapolite suggests more oxidising-rich conditions during the emplacement of the Tjårrojåkka-Cu deposit. From existing data it might be suggested that one evolving system created the two occurrences, with the copper mineralisation representing a slightly later product.
Keywords: Sweden; Proterozoic; IOCG; Hydrothermal alteration; Mineral chemistry

Host rocks to the Aitik Cu–Au–Ag deposit in northern Sweden are strongly altered and deformed Early Proterozoic mica(-amphibole) schists and gneisses. The deposit is characterised by numerous mineralisation styles, vein and alteration types. Four samples were selected for Re–Os molybdenite dating and 12 samples for U–Pb titanite dating in order to elucidate the magmatic/hydrothermal and metamorphic history following primary ore deposition in the Aitik Cu–Au–Ag deposit. Samples represent dyke, vein and alteration assemblages from the ore zone, hanging wall and footwall to the deposit. Re–Os dating of molybdenite from deformed barite and quartz veins yielded ages of 1,876±10 Ma and 1,848±8 Ma, respectively. A deformed pegmatite dyke yielded a Re–Os age of 1,848±6 Ma, and an undeformed pegmatite dyke an age of 1,728±7 Ma. U–Pb dating of titanite from a diversity of alteration mineral associations defines a range in ages between 1,750 and 1,805 Ma with a peak at ca. 1,780 Ma. The ages obtained, together with previous data, bracket a 160-Ma (1,890–1,730 Ma) time span encompassing several generations of magmatism, prograde to peak metamorphism, and post-peak cooling; events resulting in the redistribution and addition of metals to the deposit. This multi-stage evolution of the Aitik ore body suggests that the deposit was affected by several thermal events that ultimately produced a complex ore body. The Re–Os and U–Pb ages correlate well with published regional Re–Os and U–Pb age clusters, which have been tied to major magmatic, hydrothermal, and metamorphic events. Primary ore deposition at ca. 1,890 Ma in connection with intrusion of Haparanda granitoids was followed by at least four subsequent episodes of metamorphism and magmatism. Early metamorphism at 1,888–1,872 Ma overlapping with Haparanda (1,890–1,880 Ma) and Perthite-monzonite (1,880–1,870 Ma) magmatism clearly affected the Aitik area, as well as late metamorphism and Lina magmatism at 1,810–1,774 Ma and TIB1 magmatism at 1,800 Ma. The 1,848 Ma Re–Os ages obtained from molybdenite in a quartz vein and pegmatite dyke suggests that the 1,850 Ma magmatism recorded in parts of northern Norrbotten also affected the Aitik area.
Keywords: Aitik Cu–Au–Ag deposit; Titanite; Molybdenite; Re–Os and U–Pb dating; Northern Norrbotten ore province; Sweden