Applied Biochemistry and Biotechnology (v.179, #8)

Cocos nucifera is one of the highest nutritional and medicinal value plants with various fractions of proteins which play a major role in several biological applications such as anti-microbial, anti-inflammatory, anti-diabetic, anti-neoplastic, anti-parasitic, insecticidal, and leishmanicidal activities. This review is focused on several biotechnological, biomedical aspects of various solvent extracts collected from different parts of coconut and the phytochemical constituents which are present in it. The results obtained from this source will facilitate most of the researchers to focus their work toward the process of diagnosing diseases in future.
Keywords: Phytoconstituents; Anti-diabetic; Anti-inflammatory; Anti-parasitic; Biological applications; Cocos nucifera ; Various extracts

Extraction of Oil from Flaxseed (Linum usitatissimum L.) Using Enzyme-Assisted Three-Phase Partitioning by Zhi-jian Tan; Zi-zhen Yang; Yong-jian Yi; Hong-ying Wang; Wan-lai Zhou; Fen-fang Li; Chao-yun Wang (1325-1335).
In this study, enzyme-assisted three-phase partitioning (EATPP) was used to extract oil from flaxseed. The whole procedure is composed of two parts: the enzymolysis procedure in which the flaxseed was hydrolyzed using an enzyme solution (the influencing parameters such as the type and concentration of enzyme, temperature, and pH were optimized) and three-phase partitioning (TPP), which was conducted by adding salt and t-butanol to the crude flaxseed slurry, resulting in the extraction of flaxseed oil into alcohol-rich upper phase. The concentration of t-butanol, concentration of salt, and the temperature were optimized to maximize the extraction yield. Under optimized conditions of a 49.29 % t-butanol concentration, 30.43 % ammonium sulfate concentration, and 35 °C extraction temperature, a maximum extraction yield of 71.68 % was obtained. This simple and effective EATPP can be used to achieve high extraction yields and oil quality, and thus, it is potential for large-scale oil production.
Keywords: Enzyme-assisted three-phase partitioning; Flaxseed oil; Enzyme kinetics; GC–MS analysis

Saccharomyces cerevisiae PTCC5269 growth was evaluated to specify an optimum culture medium to reach the highest protein production. Experiment design was conducted using a fraction of the full factorial methodology, and signal to noise ratio was used for results analysis. Maximum cell of 8.84 log (CFU/mL) was resulted using optimized culture composed of 0.3, 0.15, 1, and 50 g L−1 of ammonium sulfate, iron sulfate, glycine, and glucose, respectively at 300 rpm and 35 °C. Glycine concentration (39.32 % contribution) and glucose concentration (36.15 % contribution) were determined as the most effective factors on the biomass production, while Saccharomyces cerevisiae growth had showed the least dependence on ammonium sulfate (5.2 % contribution) and iron sulfate (19.28 % contribution). The most interaction was diagnosed between ammonium sulfate and iron sulfate concentrations with interaction severity index of 50.71 %, while the less one recorded for glycine and glucose concentration was equal to 8.12 %. An acceptable consistency of 84.26 % was obtained between optimum theoretical cell numbers determined by software of 8.91 log (CFU/mL), and experimentally measured one at optimal condition confirms the suitability of the applied method. High protein content of 44.6 % using optimum culture suggests that Saccharomyces cerevisiae is a good commercial case for single cell protein production.
Keywords: Culture medium composition; Optimization; Saccharomyces cerevisiae ; Single cell protein; Taguchi approach

Cellulases: Classification, Methods of Determination and Industrial Applications by Amita Sharma; Rupinder Tewari; Susheel Singh Rana; Raman Soni; Sanjeev Kumar Soni (1346-1380).
Microbial cellulases have been receiving worldwide attention, as they have enormous potential to process the most abundant cellulosic biomass on this planet and transform it into sustainable biofuels and other value added products. The synergistic action of endoglucanases, exoglucanases, and β-glucosidases is required for the depolymerization of cellulose to fermentable sugars for transformation in to useful products using suitable microorganisms. The lack of a better understanding of the mechanisms of individual cellulases and their synergistic actions is the major hurdles yet to be overcome for large-scale commercial applications of cellulases. We have reviewed various microbial cellulases with a focus on their classification with mechanistic aspects of cellulase hydrolytic action, insights into novel approaches for determining cellulase activity, and potential industrial applications of cellulases.
Keywords: Biofuel; Cellulose; Cellulases; Classification; Cellulase assays; Industrial applications

Microbial Degradation of Chlorogenic Acid by a Sphingomonas sp. Strain by Yuping Ma; Xiaoyu Wang; Xueling Nie; Zhan Zhang; Zongcan Yang; Cong Nie; Hongzhi Tang (1381-1392).
In order to elucidate the metabolism of chlorogenic acid by environmental microbes, a strain of Sphingomonas sp. isolated from tobacco leaves was cultured under various conditions, and chlorogenic acid degradation and its metabolites were investigated. The strain converting chlorogenic acid was newly isolated and identified as a Sphingomonas sp. strain by 16S rRNA sequencing. The optimal conditions for growth and chlorogenic acid degradation were 37 °C and pH 7.0 with supplementation of 1.5 g/l (NH4)2SO4 as the nitrogen source and 2 g/l chlorogenic acid as the sole carbon source. The maximum chlorogenic acid tolerating capability for the strain was 5 g/l. The main metabolites were identified as caffeic acid, shikimic acid, and 3,4-dihydroxybenzoic acid based on gas chromatography-mass spectrometry analysis. The analysis reveals the biotransformation mechanism of chlorogenic acid in microbial cells isolated from the environment.
Keywords: Degradation; Chlorogenic acid; Intermediate metabolites; Sphingomonas sp.

For studies on functional genomics, small RNAs, especially microRNAs (miRNAs), have emerged as a hot topic due to their importance in cellular and developmental processes. Identification of insect miRNAs largely depends on the availability of genomic sequences in the public domain. The large milkweed bug, Oncopeltus fasciatus (Dallas) is a hemimetabolous insect which has become a model hemipteran system for various molecular studies. In this study, we identified 96 candidate mature miRNAs from O. fasciatus genome using a blast search with the previously reported animal miRNAs. The secondary structure of predicted miRNA sequences was determined online using “mfold” web server and verified by calculating the minimal free energy index (MFEI). Six miRNAs let-7e, miR-133c, miR-219b, mir-466d, mir-669f, and mir-669l are reported for the first time in Insecta. Comparison of O. fasciatus mir-2 and mir-71 family clusters to those of diverse insect species showed that they are highly conserved. The phylogenetic analysis of miRNAs revealed the evolutionary relationship of conserved miRNAs of O. fasciatus with other insect species. Using a classical rule-based algorithm method, we predicted the possible targets of the new miRNAs. Our study not only identified the list of miRNAs in O. fasciatus but also provides a basic platform for developing novel pest management strategies based on artificial miRNAs.
Keywords: O. fasciatus ; miRNA; Insect genome; MFEI value; Target prediction

Comparative Cold Shock Expression and Characterization of Fungal Dye-Decolorizing Peroxidases by Christoph J. Behrens; Kateryna Zelena; Ralf G. Berger (1404-1417).
Dye-decolorizing peroxidases (DyPs) from Auricularia auricula-judae, Bjerkandera adusta, Pleurotus ostreatus and Marasmius scorodonius (Basidiomycota) were expressed in Escherichia coli using the cold shock-inducible expression system pCOLD I DNA. Functional expression was achieved without the addition of hemin or the co-expression of any chaperones. The presence or absence of the native signal sequence had a strong impact on the success of the expression, but the effect was not consistent for the different DyPs. While BaDyP and AajDyP were stable at 50 °C, the more thermolabile MsP2 and PoDyp, upon catalytic intervention, lend themselves to more rapid thermal inactivation. The bleaching of norbixin (E 160b) using MsP2 was most efficient at pH 4.0, while BaDyP and AajDypP worked best in the weakly acidic to neutral range, indicating a choice of DyPs for a broad field of applications in different food matrices.
Keywords: Heterologous expression; Dye-decolorizing peroxidase (DyP); Escherichia coli ; Basidiomycota

Robust Parameter Identification to Perform the Modeling of pta and poxB Genes Deletion Effect on Escherichia Coli by V. Guerrero-Torres; M. Rios-Lozano; J. A. Badillo-Corona; I. Chairez; C. Garibay-Orijel (1418-1434).
The aim of this study was to design a robust parameter identification algorithm to characterize the effect of gene deletion on Escherichia coli (E. coli) MG1655. Two genes (pta and poxB) in the competitive pathways were deleted from this microorganism to inhibit pyruvate consumption. This condition deviated the E. coli metabolism toward the Krebs cycle. As a consequence, the biomass, substrate (glucose), lactic, and acetate acids as well as ethanol concentrations were modified. A hybrid model was proposed to consider the effect of gene deletion on the metabolism of E. coli. The model parameters were estimated by the application of a least mean square method based on the instrument variable technique. To evaluate the parametric identifier method, a set of robust exact differentiators, based on the super-twisting algorithm, was implemented. The hybrid model was successfully characterized by the parameters obtained from experimental information of E. coli MG1655. The significant difference between parameters obtained with wild-type strain and the modified (with deleted genes) justifies the application of the parametric identification algorithm. This characterization can be used to optimize the production of different byproducts of commercial interest.
Keywords: E. coli ; Gene deletion; Hybrid model; Robust exact differentiator; Parametric modeling

The present research work is concerned with the biotransformation of l-tyrosine to dopamine (DA) by calcium alginate entrapped conidiospores of a mutant strain of Aspergillus oryzae. Different strains of A. oryzae were isolated from soil. Out of 13 isolated strains, isolate-2 (I-2) was found to be a better DA producer. The wild-type I-2 was chemically improved by treating it with different concentrations of ethyl methyl sulfonate (EMS). Among seven mutant variants, EMS-6 exhibiting maximal DA activity of 43 μg/ml was selected. The strain was further exposed with l-cysteine HCl to make it resistant against diversion and environmental stress. The conidiospores of selected mutant variant A. oryzae EMS-6 strain were entrapped in calcium alginate beads. Different parameters for immobilization were investigated. The activity was further improved from 44 to 62 μg/ml under optimized conditions (1.5 % sodium alginate, 2 ml inoculum, and 2 mm bead size). The best resistant mutant variable exhibited over threefold increase in DA activity (62 μg/ml) than did wild-type I-2 (21 μg/ml) in the reaction mixture. From the results presented in the study, it was observed that high titers of DA activity in vitro could effectively be achieved by the EMS-induced mutagenesis of filamentous fungus culture used.
Keywords: Dopamine; A. oryzae ; Biotransformation; EMS; Calcium alginate

Brucella was an intracellular parasite, which could infect special livestock and humans. After infected by Brucella, livestock’s reproductive system could be affected and destroyed resulting in huge economic losses. More seriously, it could be contagious from livestock to humans. So far, there is no available vaccine which is safe enough for humans. On this point, subunit vaccine has become the new breakthrough of conquering brucellosis. In this study, Brucella rL7/L12-BLS fusion protein was used as an antigen to immunize rabbits to detect the immunogenicity. The results of antibody level testing assay of rabbit antiserum indicated rL7/L12-BLS fusion protein could elicit rabbits to produce high-level IgG. And gamma interferon (IFN-γ) concentrations in rabbit antiserum were obviously up-regulated in both the rL7/L12 group and rL7/L12-BLS group. Besides, the results of quantitative real-time PCR (qRT-PCR) showed the IFN-γ gene’s expression levels of both the rL7/L12 group and rL7/L12-BLS group were obviously up-regulated. All these results suggested Brucella L7/L12 protein was an ideal subunit vaccine candidate and possessed good immunogenicity. And Brucella lumazine synthase (BLS) molecule was a favorable transport vector for antigenic protein.
Keywords: Brucella ; Immunogenicity; L7/L12 ribosomal protein; Subunit vaccine candidate

Effect of Rol Genes on Polyphenols Biosynthesis in Artemisia annua and Their Effect on Antioxidant and Cytotoxic Potential of the Plant by Erum Dilshad; Sara Zafar; Hammad Ismail; Mohammad Tahir Waheed; Rosa Maria Cusido; Javier Palazon; Bushra Mirza (1456-1468).
Flavonoids are famous for their antioxidant capacity and redox potential. They can combat with cell aging, lipid peroxidation, and cancer. In the present study, Artemisia annua hybrid (Hyb8001r) was subjected to qualitative and quantitative analysis of flavonoids through HPLC. Rol genes transgenics of A. annua were also evaluated for an increase in their flavonoid content along with an increase in antioxidant and cytotoxic potential. This was also correlated with the expression level of flavonoids biosynthetic pathway genes as determined by real-time qPCR. Phenylalanine ammonia-lyase and chalcone synthase genes were found to be significantly more highly expressed in rol B (four to sixfold) and rol C transgenics (3.8–5.5-fold) than the wild-type plant. Flavonoids detected in the wild-type A. annua through HPLC include rutin (0.31 mg/g DW), quercetin (0.01 mg/g DW), isoquercetin (0.107 mg/g DW) and caffeic acid (0.03 mg/g DW). Transgenics of the rol B gene showed up to threefold increase in rutin and caffeic acid, sixfold increase in isoquercetin, and fourfold increase in quercetin. Whereas, in the case of transgenics of rol C gene, threefold increase in rutin and quercetin, 5 fold increase in isoquercetin, and 2.6-fold increase in caffeic acid was followed. Total phenolics and flavonoids content was also found to be increased in rol B (1.5-fold) and rol C (1.4-fold) transgenics as compared to the wild-type plant along with increased free radical scavenging activity. Similarly, the cytotoxic potential of rol gene transgenics against MCF7, HeLA, and HePG2 cancer cell lines was found to be significantly enhanced than the wild-type plant of A. annua. Current findings support the fact that rol genes can alter the secondary metabolism and phytochemical level of the plant. They increased the flavonoids content of A. annua by altering the expression level of flavonoids biosynthetic pathway genes. Increased flavonoid content also enhanced the antioxidant and cytotoxic potential of the plant.
Keywords: Antioxidants; Artemisia annua ; Cytotoxic potential; Flavonoids; Hyb8001r

Whey is a byproduct of the dairy industry, which has prospects of using as a source for production of various valuable compounds. The lactose present in whey is considered as an environmental pollutant and its utilization for enzyme and fuel production, may be effective for whey bioremediation. The dairy yeast Kluyveromyces marxianus have the ability to utilize lactose sharply as the major carbon source for the production of the enzyme. Five strains were tested for the production of the β-galactosidase using whey. The maximum β-galactosidase activity of 1.74 IU/mg dry weight was achieved in whey using K. marxianus MTCC 1389. The biocatalyst was further immobilized on chitosan macroparticles and exhibited excellent functional activity at 35 °C. Almost 89 % lactose hydrolysis was attained for concentrated whey (100 g/L) and retained 89 % catalytic activity after 15 cycles of reuse. Finally, β-galactosidase was immobilized on chitosan and Saccharomyces cerevisiae on calcium alginate, and both were used together for the production of ethanol from concentrated whey. Maximal ethanol titer of 28.9 g/L was achieved during fermentation at 35 °C. The conclusions generated by employing two different matrices will be beneficial for the future modeling using engineered S. cerevisiae in scale-up studies.
Keywords: ONPG; Chitosan; β-galactosidase; Immobilization; Whey