Frontiers of Materials Science (v.6, #1)

Scaffolds for central nervous system tissue engineering by Jin He; Xiu-Mei Wang; Myron Spector; Fu-Zhai Cui (1-25).
Traumatic injuries to the brain and spinal cord of the central nervous system (CNS) lead to severe and permanent neurological deficits and to date there is no universally accepted treatment. Owing to the profound impact, extensive studies have been carried out aiming at reducing inflammatory responses and overcoming the inhibitory environment in the CNS after injury so as to enhance regeneration. Artificial scaffolds may provide a suitable environment for axonal regeneration and functional recovery, and are of particular importance in cases in which the injury has resulted in a cavitary defect. In this review we discuss development of scaffolds for CNS tissue engineering, focusing on mechanism of CNS injuries, various biomaterials that have been used in studies, and current strategies for designing and fabricating scaffolds.
Keywords: central nervous system (CNS); tissue engineering; scaffold; hydrogel

Carbon nanostructures, including carbon nanotubes (CNTs) and graphene, have been studied extensively due to their special structures, excellent electrical properties and high chemical stability. With the development of nanotechnology and nanoscience, various methods have been developed to synthesize CNTs/graphene and to assemble them into microelectronic/sensor devices. In this review, we mainly demonstrate the latest progress in synthesis of CNTs and graphene and their applications in field-effect transistors (FETs) for biological sensors.
Keywords: carbon nanotube (CNT); graphene; preparation; field-effect transistor (FET); biosensor

The objective of the present study is to systematically evaluate the role of polymer crystallinity on fibroblast and osteoblast adhesion and proliferation using a series of poly(caprolactone-co-glycolide) (PCL/PGA) polymers. PCL/PGA polymers were selected since they reflect both highly crystalline and amorphous materials. PCL/PGA polymeric materials were fabricated by compression molding into thin films. Five compositions, from PCL or PGA to intermediate copolymeric compositions of PCL/PGA in ratios of 25:75, 35:65 and 45:55, were studied. Pure PCL and PGA represented the crystalline materials while the copolymers were amorphous. The polymers/copolymers were characterized using DSC to assess crystallinity, contact angle measurement for hydrophobicity, and AFM for nanotopography. The PCL/PGA films demonstrated similar hydrophobicity and nanotopography whereas they differed significantly in crystallinity. Cell adhesion to and proliferation on PCL/PGA films and proliferation studies were performed using osteoblasts and NIH-3T3 fibroblasts. It was observed that highly crystalline and rigid PCL and PGA surfaces were significantly more efficient in supporting fibroblast growth, whereas amorphous/flexible PCL/PGA 35:65 was significantly more efficient in supporting growth of osteoblasts. This study demonstrated that while chemical composition, hydrophobicity and surface roughness of PCL/PGA polymers were held constant, crystallinity and rigidity of PCL/PGA played major roles in determining cell responses.
Keywords: crystallinity; attachment; proliferation; osteoblast; fibroblast; PCL-PGA

Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes were densely grafted onto silica surface via surface-initiated atom transfer radical polymerization (SI-ATRP). The grafting reaction started from the surfaces of 2-bromoisobutyratefunctionalized silica particles in 2-propanol aqueous solution at ambient temperature using CuCl/CuCl2/N,N,N′,N′,N″-pentamethyldiethylenetriamine (PMDETA) as the catalytic system. Based on thermogravimetric analysis (TGA) results, the grafting amount and grafting density of PNIPAM chains on the surface of silica were calculated to be 1.29 mg/ m2 and 0.0215 chains/nm2, respectively. The gel permeation chromatography (GPC) result showed the relatively narrow molecular weight distribution (M w/M n= 1.21) of the grafted PNIPAAm. The modified silica particles were applied as high-performance liquid chromatography (HPLC) packing materials to successfully separate three aromatic compounds using water as mobile phase by changing column temperature. Temperature-dependent hydrophilic/hydrophobic property alteration of PNIPAAm brushes grafted on silica particles was determined with chromatographic interaction between stationary phase and analytes. Retention time was prolonged and resolution was improved with increasing temperature. Baseline separation with high resolution at relatively low temperatures was observed, demonstrating dense PNIPAAm brushes were grafted on silica surfaces.
Keywords: poly(N-isopropylacrylamide) (PNIPAAm); atom transfer radical polymerization (ATRP); temperature-responsive chromatography; separation

Electrical and non-linear optical studies on electrospun ZnO/BaO composite nanofibers by G. Nixon Samuel Vijayakumar; M. Rathnakumari; P. Sureshkumar (69-78).
Nanocapacitors and nonvolatile ferroelectric random access memories require nanoscale thin film coatings with ferroelectric properties. One dimensional ferroelectric nanofibers are used in ferroelectric memory devices owing to the fact that decrease of the dimensionality of the memory device elements will reduce the addressing and appreciably increase the storage capacity. Novel ZnO/BaO nanocomposite fibers exhibiting ferroelectric properties have been prepared in the form of non-woven mesh by electrospinning the sol derived from the sol-gel route. Thin cylindrical nanofibers of average diameter 100 nm have been obtained and their morphology is confirmed by SEM and AFM images. In the electrospinning process, the effect of the working distance on the fiber morphology was studied and it showed that working distance between 11 and 15 cm can produce fibers without beads and the decrease in working distance in this range increases the fiber diameter. Powder XRD was used to identify the phases and EDX analysis confirmed the presence of ZnO/BaO. Dielectric and non-linear optical properties have also been studied. The dielectric studies showed that ZnO/BaO composite nanofibers undergo a phase transition from ferroelectric to paraelectric at 323 K.
Keywords: nanocomposite fiber; sol-gel process; dielectric property; non-linear optical property; ferroelectric property

The effective thermal conductivity of heterogeneous or composite materials is an essential physical parameter of materials selection and design for specific functions in science and engineering. The effective thermal conductivity is heavily relied on the fraction and spatial distribution of each phase. In this work, image-based finite element method (FEM) was used to calculate the effective thermal conductivity of porous ceramics with different pore structures. Compared with former theoretical models such as effective media theory (EMT) equation and parallel model, image-based FEM can be applied to a large variety of material systems with a relatively steady deviation. The deviation of image-based FEM computation mainly comes from the difference between the two dimensional (2D) image and the three dimensional (3D) structure of the real system, and an experiment was carried out to confirm this assumption. Factors influencing 2D and 3D effective thermal conductivities were studied by FEM to illustrate the accuracy and application conditions of image-based FEM.
Keywords: thermal conductivity; image-based FEM; porous ceramic; two-phase material

Atomistic study of anisotropic effect on two-dimensional dynamic crack by Guo-Wu Ren; Tie-Gang Tang; Qin-Zhong Li (87-96).
We adopt molecular dynamics (MD) method to extensively study the dynamical process during the crack propagation along two crystallographic directions in the two-dimensional close-packed system. The dependence of crack initiation time on the loading rates is investigated in comparison with continuum analysis. By calculating the displacement and stress field, the results are in excellent agreement with the asymptotic continuum solution of low-speed propagating crack. Moreover, the crack-tip velocity is numerically attained and associated with the instability of crack surface morphology, which results from the strongly anisotropic behavior. Further analysis remarkably observes the crack-branching healing process in that the dislocation emission absorbs the concentrated strain energy of crack tip.
Keywords: crack; anisotropic effect; molecular dynamics (MD)