Biochemistry (Moscow) (v.77, #2)

Structural and functional characteristics and properties of metzincins by N. P. Balaban; N. L. Rudakova; M. R. Sharipova (119-127).
In this review the main families of endopeptidases belonging to the clan of metzincins of zinc-dependent metal-loproteinases in organisms of wide evolutional range from bacteria to mammals are considered. The data on classification, physicochemical properties, substrate specificity, and structural features of this group of enzymes are given. The activation mechanisms of metzincins, the role of these proteins in organisms, and their participation in various physiological processes are discussed.
Keywords: metalloproteinases; metzincins; astacins; adamalysins/reprolysins; matrixins; serralysins

NMDA receptors in immune competent cells by A. A. Boldyrev; E. A. Bryushkova; E. A. Vladychenskaya (128-134).
This review presents analysis of literature data indicating the presence of NMDA-type glutamate receptors in several types of immune competent cells such as thymocytes, lymphocytes, and neutrophils. The possible role of these receptors in the function of these cells is discussed. The interaction of the receptors with certain ligands circulating in the blood-stream and their role in modulation of immune function is described. It is suggested that homocysteine acts as modulator of these receptors, and its toxicity is largely explained by hyperactivation of the NMDA-type glutamate receptors.
Keywords: NMDA receptors; lymphocytes; neutrophils; thymocytes

Iron-sulfur cluster is one of the most common prosthetic groups, and it functions in numerous biological processes. However, little is currently known about the mechanisms of iron-sulfur cluster biosynthesis. In this study, we cloned and purified iron-sulfur cluster assembly proteins from Escherichia coli and assembled the cluster in vitro. The results showed that the assembly of iron-sulfur cluster is completed in about 20 min. Although iron or sulfur binds with IscU equivalently, 2-fold amount of iron or cysteine compared with that of IscU is better for the cluster formation, while high concentrations of IscS (IscS/IscU > 1: 10) do not facilitate the cluster formation. Environmental pH plays an important role in iron-sulfur cluster assembly; the cluster was well assembled at pH 7.6–8.0, but was inhibited at pH less than 7.4. On supply of a catalytic amount of IscS (1/50 of IscU) and excess of other substrates, with increasing each of IscU, iron, or cysteine concentration, the iron-sulfur cluster assembly process developed from first order reaction, mixed order reaction to zero order reaction, and up to 64% of apo-IscU was converted to the [2Fe-2S] cluster-bound IscU under the optimal laboratory conditions.
Keywords: iron-sulfur cluster; IscS; IscU; IscA-Fe; iron; cysteine

The dye H2DCF-DA, which forms the fluorescent molecule DCF in the reaction with hydrogen peroxide, H2O2, was used to study light-induced H2O2 production in isolated intact chloroplasts and in protoplasts of mesophyll cells of Arabidopsis, pea, and maize. A technique to follow the kinetics of light-induced H2O2 production in the photosynthesizing cells using this dye has been developed. Distribution of DCF fluorescence in these cells in the light has been investigated. It was found that for the first minutes of illumination the intensity of DCF fluorescence increases linearly after a small lag both in isolated chloroplasts and in chloroplasts inside protoplast. In protoplasts of Arabidopsis mutant vtc2-2 with disturbed biosynthesis of ascorbate, the rate of increase in DCF fluorescence intensity in chloroplasts was considerably higher than in protoplasts of the wild type plant. Illumination of protoplasts also led to an increase in DCF fluorescence intensity in mitochondria. Intensity of DCF fluorescence in chloroplasts increased much more rapidly than in cytoplasm. The cessation of cytoplasmic movement under illumination lowered the rate of DCF fluorescence intensity increase in chloroplasts and sharply accelerated it in the cytoplasm. It was revealed that in response to switching off the light, the intensity of fluorescence of both DCF and fluorescent dye FDA increases in the cytoplasm in the vicinity of chloroplasts, while it decreases in the chloroplasts; the opposite changes occur in response to switching on the light again. It was established that these phenomena are connected with proton transport from chloroplasts in the light. In the presence of nigericin, which prevents the establishment of transmembrane proton gradients, the level of DCF fluorescence in cytoplasm was higher and increased more rapidly than in the chloroplasts from the very beginning of illumination. These results imply the presence of H2O2 export from chloroplasts to cytoplasm in photosynthesizing cells in the light; the increase in this export falls in the same time interval as does the cessation of cytoplasmic movement.
Keywords: plants; protoplasts; chloroplasts; reactive oxygen species; hydrogen peroxide; confocal microscopy

Rapid degradation of the tetrameric Mn cluster in illuminated, PsbO-depleted photosystem II preparations by B. K. Semin; L. N. Davletshina; I. I. Ivanov; M. Seibert; A. B. Rubin (152-156).
A “decoupling effect” (light-induced electron transport without O2 evolution) was observed in Ca-depleted photosystem II (PSII(-Ca)) membranes, which lack PsbP and PsbQ (Semin et al. (2008) Photosynth. Res., 98, 235–249). Here PsbO-depleted PSII (PSII(-PsbO)) membranes (which also lack PsbP and PsbQ) were used to examine effects of PsbO on the decoupling. PSII(-PsbO) membranes do not reduce the acceptor 2,6-dichlorophenolindophenol (DCIP), in contrast to PSII(-Ca) membranes. To understand why DCIP reduction is lost, we studied light effects on the Mn content of PSII(-PsbO) samples and found that when they are first illuminated, Mn cations are rapidly released from the Mn cluster. Addition of an electron acceptor to PSII(-PsbO) samples accelerates the process. No effect of light was found on the Mn cluster in PSII(-Ca) membranes. Our results demonstrate that: (a) the oxidant, which directly oxidizes an as yet undefined substrate in PSII(-Ca) membranes, is the Mn cluster (not the YZ radical or P680+); (b) light causes rapid release of Mn cations from the Mn cluster in PSII(-PsbO) membranes, and the mechanism is discussed; and (c) rapid degradation of the Mn cluster under illumination is significant for understanding the lack of functional activity in some PSII(-PsbO) samples reported by others.
Keywords: photosystem II; oxygen-evolving complex; manganese; PsbO extrinsic protein

FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: Photooxidation of the primary electron donor by A. A. Zabelin; V. A. Shkuropatova; V. A. Shuvalov; A. Ya. Shkuropatov (157-164).
Photochemical oxidation of the primary electron donor P in reaction centers (RCs) of the filamentous anoxygenic phototrophic bacterium Chloroflexus (C.) aurantiacus was examined by light-induced Fourier transform infrared (FTIR) difference spectroscopy at 95 K in the spectral range of 4000–1200 cm−1. The light-induced P+Q A /PQA IR spectrum of C. aurantiacus RCs is compared to the well-characterized FTIR difference spectrum of P photooxidation in the purple bacterium Rhodobacter (R.) sphaeroides R-26 RCs. The presence in the P+Q A /PQA FTIR spectrum of C. aurantiacus RCs of specific low-energy electronic transitions at ∼2650 and ∼2200 cm−1, as well as of associated vibrational (phase-phonon) bands at 1567, 1481, and 1294–1285 cm−1, indicates that the radical cation P+ in these RCs has dimeric structure, with the positive charge distributed between the two coupled bacteriochlorophyll a molecules. The intensity of the P+ absorbance band at ∼1250 nm (upon chemical oxidation of P at room temperature) in C. aurantiacus RCs is approximately 1.5 times lower than that in R. sphaeroides R-26 RCs. This fact, together with the decreased intensity of the absorbance band at ∼2650 cm−1, is interpreted in terms of the weaker coupling of bacteriochlorophylls in the P+ dimer in C. aurantiacus compared to R. sphaeroides R-26. In accordance with the previous (pre)resonance Raman data, FTIR measurements in the carbonyl stretching region show that in C. aurantiacus RCs (i) the 131-keto C=O groups of PA and PB molecules constituting the P dimer are not involved in hydrogen bonding in either neutral or photooxidized state of P and (ii) the 31-acetyl C=O group of PB forms a hydrogen bond (probably with tyrosine M187) absorbing at 1635 cm−1. Differential signals at 1757(+)/1749(−) and 1741(+)/1733(−) cm−1 in the FTIR spectrum of C. aurantiacus RCs are attributed to the 133-ester C=O groups of P in different environments.
Keywords: Chloroflexus aurantiacus; reaction center; primary electron donor; photooxidation; FTIR spectroscopy; Rhodobacter sphaeroides

We earlier described CBS-pyrophosphatase of Moorella thermoacetica (mtCBS-PPase) as a novel phosphohydrolase that acquired a pair of nucleotide-binding CBS domains during evolution, thus endowing the protein with the capacity to be allosterically regulated by adenine nucleotides (Jämsen, J., Tuominen, H., Salminen, A., Belogurov, G. A., Magretova, N. N., Baykov, A. A., and Lahti, R. (2007) Biochem. J., 408, 327–333). We herein describe a more evolved type of CBS-pyrophosphatase from Clostridium perfringens (cpCBS-PPase) that additionally contains a DRTGG domain between the two CBS domains in the regulatory part. cpCBS-PPase retained the ability of mtCBS-PPase to be inhibited by micromolar concentrations of AMP and ADP and activated by ATP and was additionally activated by diadenosine polyphosphates (AP n A) with n > 2. Stopped-flow measurements using a fluorescent nucleotide analog, 2′(3′)-O-(N-methylanthranoyl)-AMP, revealed that cpCBS-PPase interconverts through two different conformations with transit times on the millisecond scale upon nucleotide binding. The results suggest that the presence of the DRTGG domain affords greater flexibility to the regulatory part, allowing it to more rapidly undergo conformational changes in response to binding.
Keywords: inorganic pyrophosphatase; CBS domain; DRTGG domain; Clostridia perfringens ; adenine nucleotides; diadenosine polyphosphate

It has been shown that thermoinactivation of the isolated D1/D2/cytochrome b 559 complex (RC) of photosystem 2 (PS-2) from pea under anaerobic conditions at 35°C in 20 mM Tris-HCl buffer (pH 7.2) depleted of HCO 3 , with 35 mM NaCl and 0.05% n-dodecyl-β-maltoside, results in a decrease in photochemical activity measured by photoreduction of the PS-2 primary electron acceptor, pheophytin (by 50% after 3 min of heating), which is accompanied by aggregation of the D1 and D2 proteins. Bicarbonate, formate, and acetate anions added to the sample under these conditions differently influence the maintenance of photochemical activity: a 50% loss of photochemical activity occurs in 11.5 min of heating in the presence of bicarbonate and in 4 and 4.6 min in the presence of formate and acetate, respectively. The addition of bicarbonate completely prevents aggregation of the D1 and D2 proteins as opposed to formate and acetate (their presence has no effect on the aggregation during thermoinactivation). Since the isolated RCs have neither inorganic Mn/Ca-containing core of the water-oxidizing complex nor nonheme Fe2+, it is supposed that bicarbonate specifically interacts with the hydrophilic domains of the D1 and D2 proteins, which prevents their structural modification that is a signal for aggregation of these proteins and the loss of photochemical activity.
Keywords: photosystem 2; isolated D1/D2/cytochrome b 559 complex; bicarbonate; thermoinactivation

Ceramides are a novel class of biologically active molecules involved in the regulation of different signaling pathways. Ceramide is involved in regulation of the phospholipase D (PLD) activity and development of cell resistance to insulin. In this work, we have studied age-related features of insulin regulation of PLD activity and glucose metabolism in intact cells and modeled their resistance to insulin by exogenous ceramide and palmitic acid. Contents of ceramides and of free fatty acids (FFA) are found to increase with age, as well as on incubation of liver cells of young rats in the presence of the ceramide precursor palmitic acid. Under these conditions, the ability of insulin to activate PLD, the cell uptake of glucose, and glycogen synthesis sharply decreased. On incubation of hepatocytes of young animals in the presence of exogenous C2-ceramide, the contents of endogenous ceramides increased but not the contents of FFAs and of neutral lipids. These events were accompanied by suppression of the insulin-induced production of phosphatidylethanol (a result of ethanol transphosphatidylation by PLD), glucose uptake, and glycogen synthesis. Incubation of insulin-resistant liver cells of young rats and also of hepatocytes of old rats in the presence of myriocin (an inhibitor of the de novo synthesis of ceramide) was associated with a decrease in ceramide content in the cells and an increase in the cell sensitivity to insulin. The findings indicate an important role of ceramide in disturbance of insulin signaling due to inhibition of the PLD-dependent link in the liver cells of old animals.
Keywords: ceramide; myriocin; phospholipase D; hepatocytes; insulin resistance; aging

The fatty acid composition of thymus cells, liver, blood plasma, muscle tissue, and tumor focus has been studied in mice with solid Ehrlich carcinoma. The tumor growth in the mice was associated with an increase in the total content of monounsaturated fatty acids in all organs and tissues studied and with a decrease in the total amount of polyunsaturated fatty acids in all tissues except blood plasma. The tumor tissue was characterized by increased levels of monounsaturated fatty acids in comparison with their levels in organs and tissues of intact animals. In the thymus of tumor-bearing mice, the contents of myristic and palmitic saturated fatty acids, which are associated with activation of the T-cell immunity, were increased. The most expressed and considerable changes in the fatty acid composition during tumor growth were observed in the muscle tissue of the animals. A possible role of changes in the fatty acid composition in the investigated organs and tissues of tumor-bearing mice in the organism’s response to tumor growth is discussed.
Keywords: Ehrlich carcinoma; fatty acids; thymus; liver; blood plasma; muscle tissue

Identification of a specific inhibitor of nOGA — a caspase-3 cleaved O-GlcNAcase variant during apoptosis by Jing Li; Zhonghua Li; Tiehai Li; Lin Lin; Yan Zhang; Lina Guo; Yan Xu; Wei Zhao; Peng Wang (194-200).
O-Linked N-acetylglucosamine (O-GlcNAc) modification of serines/threonines on cytoplasmic proteins is a significant signal regulating cellular processes such as cell cycle, cell development, and cell apoptosis. O-GlcNAcase (OGA) is responsible for the removal of O-GlcNAc, and it thus plays a critical role in O-GlcNAc metabolism. Interestingly, OGA can be cleaved by caspase-3 into two fragments during apoptosis, producing an N-terminal fragment (1–413 a.a.), termed nOGA. Here, using 4-MU-GlcNAc (4-methylumbelliferyl 2-acetamido-2-deoxy-β-D-glucopyranoside) as substrate, we found that the nOGA fragment retains high glycosidase activity. To probe the role of nOGA in apoptosis, it is essential to develop a potent and specific nOGA inhibitor. However, many reported inhibitors active at nanomolar concentrations (including PUGNAc, STZ, GlcNAc-statin, and NAG-thiazoline) against full-length OGA were not potent for nOGA. Next, we screened a small triazole-linked carbohydrate library and first identified compound 4 (4-pyridyl-1-(2′-deoxy-2′-acetamido-β-D-glucopyranosyl)-1,2,3-triazole) as a potent and competitive inhibitor for nOGA. This compound shows 15-fold selectivity for nOGA (K i = 48 μM) over the full-length OGA (K i = 725 μM) and 10-fold selectivity over human lysosomal β-hexosaminidase A&B (Hex A&B) (K i = 502 μM). These results reveal that compound 4 can be used as a potent and selective inhibitor for probing the role of nOGA in biological systems.
Keywords: O-GlcNAcase; isoforms; inhibitor; selectivity

Ah-receptor-independent stimulation of hepatoma 27 culture cell proliferation by polycyclic aromatic hydrocarbons by M. S. Volkov; N. A. Bolotina; V. A. Evteev; V. A. Koblyakov (201-207).
The proliferative effect of some compounds that are aryl hydrocarbon (Ah) receptor ligands was studied on hepatoma 27 cells with absent expression of Ah receptor. Compounds of the polycyclic aromatic hydrocarbon (PAH) class benzo/a/pyrene, 3-methylcholanthrene, 7,12-dimethylbenz/a/anthracene, and benzo/e/pyrene as well as β-naphthoflavone (β-NF) and chlorinated hydrocarbon Aroclor 1254 were studied. It was found that carcinogenic PAH and β-NF stimulate cell proliferation both under conditions of standard serum content and in a medium with low serum content. More efficient stimulation of proliferation was observed in the case of low serum content. Aroclor 1254 and benzo/e/pyrene did not stimulate cell proliferation. Stimulation of proliferation was accompanied by activation of the ERK1/2-dependent MAP-kinase cascade. Benzo/a/pyrene caused a decrease in the number of cells in G1 phase of the cell cycle and increase in number of cells in G2/M phases under conditions of cell growth in media with low serum content. Carcinogenic PAH and β-NF activated transcription factor AP-1, and in this case activation was more pronounced in cells grown in medium with low serum content. A possible mechanism of activation of proliferation by an Ah receptor-independent pathway is discussed.
Keywords: carcinogenesis; proliferation; AP-1; polycyclic aromatic hydrocarbons; Ah receptor

Role of NO-synthase in regulation of protein metabolism of stretched rat m. soleus muscle during functional unloading by Yu. N. Lomonosova; G. R. Kalamkarov; A. E. Bugrova; T. F. Shevchenko; N. L. Kartashkina; E. A. Lysenko; B. S. Shenkman; T. L. Nemirovskaya (208-216).
Gravitational unloading causes atrophy of muscle fibers and can lead to destruction of cytoskeletal and contractile proteins. Along with the atrophic changes, unloaded muscle frequently demonstrates significant shifts in the ratio of muscle fibers expressing fast and slow myosin heavy chain isoforms. Stretching of the m. soleus during hindlimb suspension prevents its atrophy. We supposed that neuronal NO-synthase (NOS) (which is attached to membrane dystrophin-sarcoglycan complex) can contribute to maintenance of protein metabolism in the muscle and prevent its atrophy when m. soleus is stretched. To test this hypothesis, we used Wistar rats (56 animals) in experiments with hindlimb suspension during 14 days. The group of hindlimb suspended rats with stretched m. soleus was injected with L-NAME to block NOS activity. We found that m. soleus mass and its protein content in hindlimb-suspended rats with stretched m. soleus were preserved due to prevention of protein degradation. NOS is involved in maintenance of expression of some muscle proteins. Proliferation of satellite cells in stretched m. soleus may be due to nNOS activity, but maintenance of muscle mass upon stretching is regulated not by NOS alone.
Keywords: m. soleus unloading; m. soleus stretching; L-NAME; cytoskeletal proteins; nNOS; Hsp90; E3 ligase; p70S6K