Biochemistry (Moscow) (v.76, #5)

Fluorescence correlation spectroscopy in biology, chemistry, and medicine by I. V. Perevoshchikova; E. A. Kotova; Y. N. Antonenko (497-516).
This review describes the method of fluorescence correlation spectroscopy (FCS) and its applications. FCS is used for investigating processes associated with changes in the mobility of molecules and complexes and allows researchers to study aggregation of particles, binding of fluorescent molecules with supramolecular complexes, lipid vesicles, etc. The size of objects under study varies from a few angstroms for dye molecules to hundreds of nanometers for nanoparticles. The described applications of FCS comprise various fields from simple chemical systems of solution/micelle to sophisticated regulations on the level of living cells. Both the methodical bases and the theoretical principles of FCS are simple and available. The present review is concentrated preferentially on FCS applications for studies on artificial and natural membranes. At present, in contrast to the related approach of dynamic light scattering, FCS is poorly known in Russia, although it is widely employed in laboratories of other countries. The goal of this review is to promote the development of FCS in Russia so that this technique could occupy the position it deserves in modern Russian science.
Keywords: fluorescence fluctuations; correlation spectroscopy; diffusion; aggregation; binding; nanoparticles; biopolymers; vesicles; ligands; receptors; conformational changes; nucleic acid and protein folding

This paper presents the basis of DNA genealogy, a new field of science, which is currently emerging as an unusual blend of biochemistry, history, linguistics, and chemical kinetics. The methodology of the new approach is comprised of chemical (biological) kinetics applied to a pattern of mutations in non-recombinant fragments of DNA (Y chromosome and mtDNA, the latter not being considered in this overview). The goal of the analysis is to translate DNA mutation patterns into time spans to the most recent common ancestors of a given population or tribe and to the dating of ancient migration routes. To illustrate this approach, time spans to the common ancestors are calculated for ethnic Russians, that is Eastern Slavs (R1a1 tribe), Western Slavs (I1 and I2 tribes), and Northern (or Uralic) Slavs (N1c tribe), which were found to live around 4600 years before present (R1a1), 3650 ybp (I1), 3000 and 10,500 ybp (I2, two principal DNA lineages), and 3525 ybp (N1c) (confidence intervals are given in the main text). The data were compared with the respective dates for the nearest common ancestor of the R1a1 “Indo-European” population in India, who lived 4050 years before present, whose descendants represent the majority of the upper castes in India today (up to 72%). Furthermore, it was found that the haplotypes of ethnic Russians of the R1a1 haplogroup (up to 62% of the population in the Russian Federation) and those of the R1a1 Indians (more than 100 million today) are practically identical to each other, up to 67-marker haplotypes. This essentially solves a 200-year-old mystery of who were the Aryans who arrived in India around 3500 years before the present. Haplotypes and time spans to the ancient common ancestors were also compared for the ethnic Russians of haplogroups I1 and I2, on one hand, and the respective I1 and I2 populations in Eastern and Western Europe and Scandinavia, on the other. It is suggested that the approach described in this overview lays the foundation for “molecular history”, in which the principal tool is high-technology analysis of DNA molecules of both our contemporaries and excavated ancient DNA samples, along with their biological kinetics.
Keywords: DNA; DNA genealogy; haplogroups; haplotypes; mutations; Y chromosome

This review combines the data obtained before the beginning of the 1990s with results published during the last two decades. The predominant form of the IgM molecule is a closed ring composed of five 7S subunits and a J chain. The new model of spatial structure of the pentamer postulates nonplanar mushroom-shaped form of the molecule with the plane formed by a radially-directed Fab regions and central protruding portion consisting of Cμ4 domains. Up to the year 2000 the only known Fc-receptor for IgM was pIgR. Interaction of IgM with pIgR results in secretory IgM formation, whose functions are poorly studied. The receptor designated as Fcα/μR is able to bind IgM and IgA. It is expressed on lymphocytes, follicular dendritic cells, and macrophages. A receptor binding IgM only named FcμR has also been described. It is expressed on T- and B-lymphocytes. The discovery of new Fc-receptors for IgM requires revision of notions that interactions between humoral reactions involving IgM and the cells of the immune system are mediated exclusively by complement receptors. In the whole organism, apart from IgM induced by immunization, natural antibodies (NA) are present and comprise in adults a considerable part of the circulating IgM. NA are polyreactive, germ-line-encoded, and emerge during embryogenesis without apparent antigenic stimuli. They demonstrate a broad spectrum of antibacterial activity and serve as first line of defense against microbial and viral infections. NA may be regarded as a transitional molecular form from invariable receptors of innate immunity to highly diverse receptors of adaptive immunity. By means of interaction with autoantigens, NA participate in maintenance of immunological tolerance and in clearance of dying cells. At the same time, NA may act as a pathogenic factor in atherosclerotic lesion formation and in development of tissue damage due to ischemia/reperfusion.
Keywords: IgM; Fc-receptors; B-lymphocytes; B1-lymphocytes; natural antibodies; innate immunity; adaptive immunity

We show here that γ-irradiation leads to the translocation of endogenous Werner syndrome helicase (WRN) from nucleoli to nucleoplasmic DNA double strand breaks (DSBs), and WRN plays a role in damage repair. The relocation of WRN after irradiation was perturbed by promyelocytic leukemia protein (PML) knockdown and enhanced by PML IV over-expression. PML IV physically interacted with WRN after irradiation. Amino acids (a.a.) 394 to 433 of PML were necessary for this interaction and the nucleoplasmic translocation of WRN and were involved in DSB repair and cellular sensitivity to γ-irradiation. Taken together, our results provide molecular support for a model in which PML IV physically interacts with and regulates the translocation of WRN for DNA damage repair through its 394–433 a.a. domain.
Keywords: PML; WRN; γ-irradiation; DNA damage; DNA repair

Apomyoglobin mutants with single point mutations at Val10 can form amyloid structures at permissive temperature by N. S. Katina; N. B. Ilyina; I. A. Kashparov; V. A. Balobanov; V. D. Vasiliev; V. E. Bychkova (555-563).
Formation of amyloid-like protein aggregates in human organs and tissues underlies many serious diseases, therefore being in the focus of numerous biochemical, medical, and molecular biological studies. So far, formation of amyloids by globular proteins has been studied mostly under conditions that strongly destabilized their native structure. Here we present our results obtained at permissive temperature by thioflavin T fluorescence, far UV CD, IR spectroscopy, and electron microscopy. We used apomyoglobin and its mutants with Ala or Phe substituted for Val10 that are structurally close to wild type apomyoglobin. It is shown that at permissive temperature the ability of the protein to form amyloids depends on the extent of its structural destabilization, but not on hydrophobicity of the substituting residue. A possible difference between amyloids formed by strongly destabilized proteins and those yielded by proteins with a slightly fluctuating native structure, as well as the stroke and infarction effect on the ability of proteins to form amyloid structures, are discussed.
Keywords: apomyoglobin; apomyoglobin mutants; amyloid structure; protein stability; cross-β-structure; aggregation kinetics

Three-dimensional structures of noncovalent complexes of Citrobacter freundii methionine γ-lyase with substrates by S. V. Revtovich; E. A. Morozova; E. N. Khurs; L. N. Zakomirdina; A. D. Nikulin; T. V. Demidkina; R. M. Khomutov (564-570).
Crystal structures of Citrobacter freundii methionine γ-lyase complexes with the substrates of γ-(L-1-amino-3-methylthiopropylphosphinic acid) and β-(S-ethyl-L-cysteine) elimination reactions and the competitive inhibitor L-nor-leucine have been determined at 1.45, 1.8, and 1.63 Å resolution, respectively. All three amino acids occupy the active site of the enzyme but do not form a covalent bond with pyridoxal 5′-phosphate. Hydrophobic interactions between the active site residues and the side groups of the substrates and the inhibitor are supposed to cause noncovalent binding. Arg374 and Ser339 are involved in the binding of carboxyl groups of the substrates and the inhibitor. The hydroxyl of Tyr113 is a potential acceptor of a proton from the amino groups of the amino acids.
Keywords: Citrobacter freundii methionine γ-lyase, pyridoxal 5′-phosphate, complexes with amino acids, three-dimensional structures

Protective effect of L-arginine administration on proteins of unloaded m. soleus by Yu. N. Lomonosova; G. R. Kalamkarov; A. E. Bugrova; T. F. Shevchenko; N. L. Kartashkina; E. A. Lysenko; V. I. Shvets; T. L. Nemirovskaya (571-580).
Cytoskeletal and contractile proteins degenerate during functional unloading of muscle. The ratio of myosin heavy chain (MHC) expression changes simultaneously. We have supposed that NO can be a signal molecule related to the regulation of protein metabolism upon muscle unloading. To test this hypothesis, Wistar rats underwent functional unloading for 14 days without and with peroral administration of L-arginine (500 mg/kg) as NO precursor. Significant decreases in m. soleus mass, NO, nNOS, dystrophin, Hsp90, p-S6K, and type I MHC mRNA contents were found in the group of animals with unloading without preparation compared to those in control and in the group with unloading and administration of L-arginine; at the same time, increased contents of atrogin-1/MAFbx and MuRF-1 (p < 0.05) were found. No difference in the IGF-1 mRNA content between all three groups was found. Atrophy was significantly less pronounced in the group with unloading and L-arginine administration compared to that without the amino acid, and no destruction of cytoskeletal proteins was observed. We conclude that administration of L-arginine upon functional unloading decreases the extent of m. soleus atrophy, prevents the decrease in it of type I MHC mRNA, and blocks destructive changes in some cytoskeletal proteins. Such effect can be due to the absence of increase in this group of the content of some ubiquitin ligases and decreased intensity of the p70S6 kinase synthesis marker.
Keywords: m. soleus atrophy; L-arginine administration; cytoskeletal proteins; NO; nNOS; Hsp90; E3 ligases; P70/S6k; IGF-1; MHC

Complex of digestive proteinases of Galleria mellonella caterpillars. Composition, properties, and limited proteolysis of Bacillus thuringiensis endotoxins by N. V. Bulushova; E. N. Elpidina; D. P. Zhuzhikov; L. I. Lyutikova; F. Ortego; N. E. Kirillova; I. A. Zalunin; G. G. Chestukhina (581-589).
The complex of digestive proteinases in caterpillars of the greater wax moth Galleria mellonella was studied. Using chromogenic substrates and inhibitor analysis, it was found that serine proteinases play a key role in this complex. Three anionic and two cationic forms of trypsin and one anionic and one cationic form of chymotrypsin were identified by zymography in the midgut extract of G. mellonella. The most active trypsin was purified to electrophoretic homogeneity, and its N-terminal amino acid sequence was shown to be identical to that of mature trypsin from Plodia interpunctella. Midgut extract from G. mellonella was capable of processing Cry-proteins from Bacillus thuringiensis ssp. galleriae. Enzymes with tryptic and chymotryptic activities participate in this process, and activation of protoxin Cry9A is not the rate-limiting stage in the toxic action of this protein on the greater wax moth.
Keywords: Galleria mellonella ; insect proteinases; serine proteinases; δ-endotoxins of Bacillus thuringiensis ; processing of Cry-toxins

Kinetics of chaperone activity of proteins Hsp70 and Hdj1 in human leukemia U-937 cells after preconditioning with thermal shock or compound U-133 by V. F. Lazarev; K. V. Onokhin; O. I. Antimonova; S. G. Polonik; I. V. Guzhova; B. A. Margulis (590-595).
Kinetics of the chaperone activity of proteins Hsp70 and Hdj1 were analyzed in human U-937 promonocytes during their response to heat shock or to treatment with the echinochrome triacetyl glucoside derivative U-133. To measure the chaperone activity of both proteins, a special test was developed for their recognition and binding of a denatured protein. Using this test, the chaperone activity could be concurrently estimated in large numbers of cellular or tissue extracts. We also estimated the contents of both chaperones in cells by immunoblotting. The values for contents of Hsp70 and Hdj1 obtained by two independent test systems coincided, and this suggested that the substrate-binding activity could change proportionally to the chaperone content in the protein mixture. Therefore, the test developed by us can be employed for high throughput screening of drugs activating cellular chaperones. The analysis of quantity and activity of two cellular chaperones during the cell response to heat stress or to the drug-like substance U-133 showed that both factors caused the accumulation of chaperones with similar kinetics. We conclude that the efficiency of drug preconditioning could be close to the efficiency of hyperthermia and that the high activity of chaperones could be retained in human cells for no less than 1.5 days.
Keywords: Hsp70; Hdj1; chaperone activity; chaperone inducers; acetyl glucosides; echinochrome

Immunostimulating effect of the synthetic peptide octarphin corresponding to β-endorphin fragment 12–19 by Yu. A. Kovalitskaya; Yu. N. Nekrasova; V. B. Sadovnikov; Yu. A. Zolotarev; E. V. Navolotskaya (596-604).
We have synthesized the peptide TPLVTLFK corresponding to β-endorphin fragment 12–19 (dubbed octarphin) and its analogs (LPLVTLFK, TLLVTLFK, TPLVLLFK, TPLVTLLK, TPLVTLFL). The octarphin peptide was labeled with tritium (specific activity 28 Ci/mol), and its binding to murine peritoneal macrophages was studied. [3H]Octarphin was found to bind to macrophages with high affinity (K d = 2.3 ± 0.2 nM) and specificity. The specific binding of [3H]octarphin was inhibited by unlabeled β-endorphin and the selective agonist of nonopioid β-endorphin receptor synthetic peptide immunorphin (SLTCLVKGFY) (K i = 2.7 ± 0.2 and 2.4 ± 0.2 nM, respectively) and was not inhibited by unlabeled nalox-one, α-endorphin, γ-endorphin, or [Met5]enkephalin (K i > 10 μM). Inhibitory activity of unlabeled octarphin analogs was more than 100 times lower than that of unlabeled octarphin. Octarphin was shown to stimulate activity of murine immuno-competent cells in vitro and in vivo: at concentration of 1–10 nM it enhanced the adhesion and spreading of peritoneal macrophages as well as their ability to digest bacteria of Salmonella typhimurium virulent strain 415 in vitro; the peptide administered intraperitoneally at a dose of 20 μg/animal on day 7, 3, and 1 prior to isolation of cells increased activity of peritoneal macrophages as well as spleen T- and B-lymphocytes.
Keywords: β-endorphin; naloxone; peptides; receptors; immune system

Methods in Enzymology, Vol. 478, Glycomics by G. Ya. Wiederschain (605-605).

Endotoxins: Structure, Function and Recognition by G. Ya. Wiederschain (606-606).