BioMetals (v.29, #5)

Asthma as a disruption in iron homeostasis by Andrew J. Ghio (751-779).
Over several decades, asthma has evolved from being recognized as a single disease to include a diverse group of phenotypes with dissimilar natural histories, pathophysiologies, responses to treatment, and distinctive molecular pathways. With the application of Occam’s razor to asthma, it is proposed that there is one cause underlying the numerous phenotypes of this disease and that the responsible molecular pathway is a deficiency of iron in the lung tissues. This deficiency can be either absolute (e.g. asthma in the neonate and during both pregnancy and menstruation) or functional (e.g. asthma associated with infections, smoking, and obesity). Comparable associations between asthma co-morbidity (e.g. eczema, urticaria, restless leg syndrome, and pulmonary hypertension) with iron deficiency support such a shared mechanistic pathway. Therapies directed at asthma demonstrate a capacity to impact iron homeostasis, further strengthening the relationship. Finally, pathophysiologic events producing asthma, including inflammation, increases in Th2 cells, and muscle contraction, can correlate with iron availability. Recognition of a potential association between asthma and an absolute and/or functional iron deficiency suggests specific therapeutic interventions including inhaled iron.
Keywords: Asthma; Iron; Ferritin; Inflammation

Mini-review: toxicity of mercury as a consequence of enzyme alteration by Ruby Ynalvez; Jose Gutierrez; Hector Gonzalez-Cantu (781-788).
Mercury, in both its elemental and bonded states, is noted for its negative effects on biological organisms. Recent anthropogenic and environmental disasters have spurred numerous comparative studies. These studies attempted to detail the biochemical implications of mercury ingestion, in low, persistent concentrations as well as elevated acute dosages. The studies propose models for mercuric action on healthy cells; which is centered on the element’s disruption of key enzymatic processes at deposition sites. Mercury’s high affinity for the sulfhydryl moieties of enzyme catalytic sites is a common motif for enzyme inactivation. These permanent covalent modifications inactivate the enzyme, thereby inducing devastating effects on an organism’s metabolic functions. Mercury has been shown to be highly nonspecific in its binding to sulfhydryl moieties, and highly varied in terms of how it is encountered by living organisms. This review focuses on mercury’s effects on a wide swath of enzymes, with emphasis on how these alterations deleteriously affect several metabolic pathways.
Keywords: Mercury; Mercury toxicity; Enzyme dysfunction; Reactive oxygen species

The cytotoxic activity of thiosemicarbazones (TSC) and thiocarbohydrazones was investigated against the MelRm melanoma cell line. In general, the melanoma line was susceptible to metal coordinating agents, the most useful of which incorporated the dipyridyl ketone hydrazone sub-structure. The impact of copper supplementation on the cytotoxic activity towards the melanoma line (MelRm) of metal coordinating agents when acting as ionophores is less predictable than the general improvement that has been seen in other cancer cells such as breast adenocarcinoma (MCF-7). The bimetallic nature of thiocarbohydrazone complexes with resultant loss of lipophilicity is a limiting factor in usage against MelRm. The cytotoxic activity of TSC against MelRm when used as copper ionophores could be markedly improved through combination with a partner drug capable of disrupting cellular defences to oxidative stress. In the absence of copper supplementation, both TSC and thiocarbohydrazones could be used to initiate cell cycle arrest and this could be employed to improve cytotoxicity profiles of other metallodrugs such as cisplatin.
Keywords: Copper Thiosemicarbazone; Metal chelation; Metal transport; Cisplatin; Melanoma; Reactive oxygen species (ROS)

Identification of antimicrobial activity among new sulfonamide metal complexes for combating rapidly growing mycobacteria by Vanessa Albertina Agertt; Pauline Cordenonsi Bonez; Grazielle Guidolin Rossi; Vanessa da Costa Flores; Fallon dos Santos Siqueira; Caren Rigon Mizdal; Lenice Lorenço Marques; Gelson Noe Manzoni de Oliveira; Marli Matiko Anraku de Campos (807-816).
Mycobacteriosis is a type of infection caused by rapidly growing mycobacteria (RGM), which can vary from localized illness, such as skin disease, to disseminated disease. Amikacin, cefoxitin, ciprofloxacin, clarithromycin, doxycycline, imipenem and sulfamethoxazole are antimicrobial drugs chosen to treat such illnesses; however, not all patients obtain the cure. The reason why the treatment does not work for those patients is related to the fact that some clinical strains present resistance to the existing antimicrobial drugs; thereby, the research of new therapeutic approaches is extremely relevant. The coordination of antimicrobial drugs to metals is a promising alternative in the development of effective compounds against resistant microorganisms. Sulfonamides complexed with Au, Cd, Ag, Cu, and Hg have shown excellent activity against a variety of microorganisms. Considering the importance of fighting against infections associated with RGM, the objective of this study is to evaluate the antimycobacterial activity of metal complexes of sulfonamides against RGM. Complexed sulfonamides activity were individually tested and in association with trimethoprim. The minimum inhibitory concentration (MIC) and time-kill curve of compounds against the standard strains of RGM [Mycobacterium abscessus (ATCC 19977), Mycobacterium fortuitum (ATCC 6841) and Mycobacterium massiliense (ATCC 48898)] was determined. The interaction of sulfonamides with trimethoprim was defined by inhibitory concentration index fractional for each association. The results showed that sulfonamides complexed whit metals have outstanding antimicrobial activity when compared to free sulfamethoxazole, bactericidal activity and synergistic effect when combined with trimethoprim.
Keywords: Sulfamethoxazole; Metal complexes; Trimethoprim; Rapidly growing mycobacteria; Susceptibility

7-Hydroxytropolone produced and utilized as an iron-scavenger by Pseudomonas donghuensis by Zhen Jiang; Min Chen; Xinyan Yu; Zhixiong Xie (817-826).
Pseudomonas donghuensis can excrete large quantities of iron chelating substances in iron-restricted environments. At least two kinds of iron-chelator can be found in the culture supernatant: fluorescent siderophores pyoverdins, and an ethyl acetate-extractable non-fluorescent substance. The non-fluorescent substance was the dominant contributor to the iron chelating activity of the culture supernatant of P. donghuensis. Electron ionization mass spectrometry, NMR spectroscopy, and IR spectroscopy identified the non-fluorescent iron-chelator as 7-hydroxytropolone. The stoichiometry of 7-hydroxytropolone ferric complex was determined to be 2:1 by the continuous variation method. The production of 7-hydroxytropolone was repressible by iron in the medium. Moreover, the inhibited growth of doubly siderophore-deficient strain of P. donghuensis under iron-limiting conditions could be partly restored by 7-hydroxytropolone. Thus, 7-hydroxytropolone was considered to play a previously undiscovered role as an iron-scavenger for P. donghuensis.
Keywords: 7-Hydroxytropolone; Pseudomonas donghuensis ; Siderophore; 7-Hydroxytropolone ferric complex

Treatment strategies in Alzheimer’s disease: a review with focus on selenium supplementation by Jan Aaseth; Jan Alexander; Geir Bjørklund; Knut Hestad; Petr Dusek; Per M. Roos; Urban Alehagen (827-839).
Alzheimer’s disease (AD) is a neurodegenerative disorder presenting one of the biggest healthcare challenges in developed countries. No effective treatment exists. In recent years the main focus of AD research has been on the amyloid hypothesis, which postulates that extracellular precipitates of beta amyloid (Aβ) derived from amyloid precursor protein (APP) are responsible for the cognitive impairment seen in AD. Treatment strategies have been to reduce Aβ production through inhibition of enzymes responsible for its formation, or to promote resolution of existing cerebral Aβ plaques. However, these approaches have failed to demonstrate significant cognitive improvements. Intracellular rather than extracellular events may be fundamental in AD pathogenesis. Selenate is a potent inhibitor of tau hyperphosphorylation, a critical step in the formation of neurofibrillary tangles. Some selenium (Se) compounds e.g. selenoprotein P also appear to protect APP against excessive copper and iron deposition. Selenoproteins show anti-inflammatory properties, and protect microtubules in the neuronal cytoskeleton. Optimal function of these selenoenzymes requires higher Se intake than what is common in Europe and also higher intake than traditionally recommended. Supplementary treatment with N-acetylcysteine increases levels of the antioxidative cofactor glutathione and can mediate adjuvant protection. The present review discusses the role of Se in AD treatment and suggests strategies for AD prevention by optimizing selenium intake, in accordance with the metal dysregulation hypothesis. This includes in particular secondary prevention by selenium supplementation to elderly with mild cognitive impairment.
Keywords: Alzheimer’s disease; Copper; Iron; Neuroinflammation; Transmitters; Selenium

In vivo effect of copper status on cisplatin-induced nephrotoxicity by Ludmila V. Puchkova; Alexey N. Skvortsov; Paolo Rusconi; Ekaterina Yu. Ilyechova; Massimo Broggini (841-849).
Cisplatin is a widely used antitumor agent; however, tumor resistance and severe side effects limit its use. It is well accepted that cisplatin toxicity can be modulated in vitro in cell cultures by copper salts. In the present work, mice with different blood serum copper status were treated with a single intraperitoneal cisplatin injection at a dose of 5 mg/kg, monitored for 3 days in metabolic cages and analyzed for renal function. Both copper-deficient and copper-overloaded mice displayed more severe early proteinuria and retarded platinum excretion than control mice. The effects of copper status on cisplatin-induced nephrotoxicity are discussed.
Keywords: Cisplatin; Nephrotoxicity; Murine model of copper status

Role and regulation of ferritin-like proteins in iron homeostasis and oxidative stress survival of Caulobacter crescentus by Ivan Gonçalves de Castro Ferreira; Mirian Molnar Rodrigues; José Freire da Silva Neto; Ricardo Ruiz Mazzon; Marilis do Valle Marques (851-862).
Iron is an essential nutrient that is poorly available to living organisms but can be harmful when in excess due to the production of reactive oxygen species. Bacteria and other organisms use iron storage proteins called ferritins to avoid iron toxicity and as a safe iron source in the cytosol. The alpha-proteobacterium Caulobacter crescentus has two putative ferritins, Bfr and Dps, and some other proteins belonging to the ferritin-like superfamily, among them the one encoded by CC_0557. In this work, we have analyzed the role and regulation of these three putative ferritin-like proteins. Using lacZ-transcriptional fusions, we found that bfr expression is positively regulated (2.5-fold induction) by the Fe-responsive regulator Fur in iron sufficiency, as expected for an iron storage protein. Expression of dps was induced 1.5-fold in iron limitation in a Fur-independent manner, while the expression of the product of CC_0557 was unaffected by either iron supply or Fur. With respect to growth phase, while bfr expression was constant during growth, expression of dps (1.4-fold) and CC_0557 (around seven times) increased in the transition from exponential to stationary phase. Deletion mutant strains for each gene and a double dps/bfr mutant were obtained and tested for oxidative stress resistance. The dps mutant was very sensitive to H2O2, and this phenotype was not relieved by the addition of the iron chelator 2′,2-dipyridyl in the conditions tested. While bfr and CC_0557 showed no phenotype as to H2O2 resistance, the double dps/bfr mutant had a similar phenotype to the dps mutation alone. These findings indicate that in C. crescentus Bfr contributes to iron homeostasis and Dps has a role in protection against oxidative stress. The role of the protein CC_0557 containing a ferritin-like fold remains unclear.
Keywords: Ferritin; Iron homeostasis; Oxidative stress; Caulobacter crescentus

Organogold(III) compounds as experimental anticancer agents: chemical and biological profiles by Lara Massai; Damiano Cirri; Elena Michelucci; Gianluca Bartoli; Annalisa Guerri; Maria A. Cinellu; Fabio Cocco; Chiara Gabbiani; Luigi Messori (863-872).
In the last few years gold(III) complexes have attracted growing attention in the medicinal chemistry community as candidate anticancer agents. In particular some organogold(III) compounds manifested quite attractive pharmacological behaviors in preclinical studies. Here we compare the chemical and biological properties of the novel organogold(III) complex [Au(bipydmb−H)(NH(CO)CH3)][PF6] (Aubipyaa) with those of its parent compounds [Au(bipydmb−H)(OH)][PF6] (Aubipyc) and [Au2(bipydmb−H)2)(μ−O)][PF6]2 (Au2bipyc), previously synthesized and characterized. The three study compounds were comparatively assessed for their antiproliferative actions against HCT-116 cancer cells, revealing moderate cytotoxic effects. Proapoptotic and cell cycle effects were also monitored. Afterward, to gain additional mechanistic insight, the three gold compounds were challenged against the model proteins HEWL, RNase A and cytochrome c and reactions investigated through UV–Vis and ESI–MS analysis. A peculiar and roughly invariant protein metalation profile emerges in the three cases consisting of protein binding of {Au(bipydmb−H)} moieties. The implications of these results are discussed in the frame of current knowledge on anticancer gold compounds.
Keywords: Anticancer drugs; Gold compounds; ESI–MS; Protein metalation

Homeostasis of chosen bioelements in organs of rats receiving lithium and/or selenium by Małgorzata Kiełczykowska; Irena Musik; Renata Żelazowska; Anna Lewandowska; Jacek Kurzepa; Joanna Kocot (873-879).
Lithium is an essential trace element, widely used in medicine and its application is often long-term. Despite beneficial effects, its administration can lead to severe side effects including hyperparathyroidism, renal and thyroid disorders. The aim of the current study was to evaluate the influence of lithium and/or selenium treatment on magnesium, calcium and silicon levels in rats’ organs as well as the possibility of using selenium as an adjuvant in lithium therapy. The study was performed on rats divided into four groups (six animals each): control-treated with saline; Li-treated with Li2CO3 (2.7 mg Li/kg b.w.); Se-treated with Na2SeO3·H2O (0.5 mg Se/kg b.w.); Se + Li-treated simultaneously with Li2CO3 and Na2SeO3·H2O (2.7 mg Li/kg b.w. and of 0.5 mg Se/kg b.w., respectively). The administration was performed in form of water solutions by stomach tube once a day for 3 weeks. In the organs (liver, kidney, brain, spleen, heart, lung and femoral muscle) the concentrations of magnesium, calcium and silicon were determined. Magnesium was increased in liver of Se and Se + Li given rats. Lithium decreased tissue Ca and co-administration of selenium reversed this effect. Silicon was not affected by any treatment. The beneficial effect of selenium on disturbances of calcium homeostasis let suggest that further research on selenium application as an adjuvant in lithium therapy is worth being performed.
Keywords: Selenium; Lithium; Magnesium; Calcium; Silicon; Male rats

Trivalent chromium alleviates oleic acid induced steatosis in SMMC-7721 cells by decreasing fatty acid uptake and triglyceride synthesis by Song Wang; Jian Wang; Xiaonan Zhang; Linlin Hu; Zhijia Fang; Zhiwei Huang; Ping Shi (881-892).
Trivalent chromium [Cr(III)] has been shown as an essential trace element for human health. Previous studies depict that Cr(III) plays important roles in maintaining normal glucose and lipid metabolism, whereas its effect on the hepatic lipid metabolism is still unknown. In the present study, we investigated the effects and underlying mechanisms of Cr on hepatic steatosis induced by oleic acid (OA) in human hepatoma SMMC-7721 cells. Hepatic steatosis model was co-administered with Cr. Indexes of lipid accumulation were determined and associated genes expression were analyzed. The data showed that OA could induce lipid accumulation and triglyceride (TG) content in SMMC-7721 cells, and significantly increase the expression of cluster of differentiation 36 (CD36) and diacylglycerol acyltransferase 2 (DGAT2). This steatosis effect of OA was ameliorated by Cr. The TG accumulation and up-regulation of CD36 and DGAT2 genes followed steatosis induction were inhibited by Cr. After the treatment of Cr, excessive intracellular OA content was also attenuated. Furthermore, Cr still performed inhibitory effect of DGAT2 expression at the presence of DGAT2 agonist or inhibitor, which indicated that the inhibitory effect of Cr on lipogenesis is associated with the downregulation of DGAT2 expression. These findings demonstrate that Cr alleviates hepatic steatosis via suppressing CD36 expression to prevent fatty acid uptake, as well as suppressing DGAT2 expression to inhibit TG synthesis. It suggests that CD36 and DGAT2 might become the novel drug targets for their properties in hepatic steatosis. Most importantly, Cr may be a potential anti-steatosis candidate to offer protective effects against liver damage.
Keywords: Trivalent chromium; Hepatic steatosis; Oleic acid; CD36; DGAT2

Elevated mercury bound to serum proteins in methylmercury poisoned rats after selenium treatment by Yunyun Li; Yuqin Fan; Jiating Zhao; Xiaohan Xu; Hui Jing; Lihai Shang; Yuxi Gao; Bai Li; Yu-Feng Li (893-903).
Methylmercury is a toxic pollutant and is generated by microbial methylation of elemental or inorganic mercury in the environment. Previous study found decreased hepatic MDA levels and urinary mercury levels in methylmercury poisoned rats after sodium selenite treatment. This study further found increased mercury levels in serum samples from methylmercury poisoned rats after selenium treatment. By using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry, three Hg- binding protein fractions and two Se-binding protein fractions were identified with the molecular weight of approximately 21, 40, and 75 kDa and of 40 and 75 kDa, respectively. Elevated mercury level in the 75 kDa protein fraction was found binding with both Hg and Se, which may explain the decreased urinary Hg excretion in MeHg poisoned rats after Se treatment. MALDI-TOF-MS analysis of the serum found that the 75 kDa protein fractions were albumin binding with both Hg and Se and the 21 kDa fraction was Hg- binding metallothionein.
Keywords: Methylmercury; Selenite; Albumin; SEC–ICP–MS; MALDI-TOF-MS; Rats

New gold carbene complexes as candidate anticancer agents by Alessandro Pratesi; Damiano Cirri; Mirjana D. Đurović; Serena Pillozzi; Giulia Petroni; Živadin D. Bugarčić; Luigi Messori (905-911).
Three structurally related gold(I) carbene complexes with bulky hydrophobic ligands i.e. 13 were investigated in solution for further consideration as candidate anticancer agents. Cytotoxic assays were subsequently conducted on bone marrow-derived preosteoclast cell line of human origin (FLG 29.1) and human colon cancer cells (HCT-116). A far greater cytotoxic activity was measured for compound 1 against HCT-116 cells compared to 2 and 3; conversely, all compounds were highly and similarly active against FLG 29.1 cells. Results obtained for the reaction of complexes 1 and 2 with RNase A documented the occurrence of a weak interaction with this model protein and the formation of a tiny amount of the corresponding adduct. Moreover, a certain reactivity of the complex 2 was also detected toward GSH. The general implications of the obtained results are discussed.
Keywords: Anticancer drugs; Gold carbene; ESI–MS; Protein interaction

Decreased snake venom metalloproteinase effects via inhibition of enzyme and modification of fibrinogen by Vance G. Nielsen; Marc A. Cerruti; Olivia M. Valencia; Quinlan Amos (913-919).
Since the introduction of antivenom administration 120 years ago to treat venomous snake bit, it has been the gold standard for saving life and limb. However, this therapeutic approach is not always effective and not without potential life-threatening side effects. We tested a new paradigm to abrogate the plasmatic anticoagulant effects of fibrinogenolytic snake venom metalloproteinases by modification of fibrinogen with iron and carbon monoxide and by inhibiting these Zn2+ dependent metalloproteinases directly with carbon monoxide exposure. Assessment of the fibrinogenolytic effects of venoms collected from Puff adder, Gaboon viper and Indian cobra snakes on plasmatic coagulation kinetics was performed with thrombelastography. Pretreatment of plasma with iron and carbon monoxide exposure markedly attenuated the effects of all three venoms, and direct pretreatment of each venom with carbon monoxide also significantly decreased the ability to compromise coagulation. These results demonstrated that the introduction of a transition metal (e.g., modulation of the α-chain of fibrinogen with iron), modulation of transition metal in heme (e.g., carbon monoxide modulation of fibrinogen-bound heme iron), and direct inhibition of transition metal containing venom enzymes (e.g., CO binding to Zn2+ or displacing Zn2+ from the catalytic site) significantly decreased fibrinogenolytic activity. This biometal modulation strategy to attenuate the anticoagulant effects of snake venom metalloproteinases could potentially diminish hemostatic injury in envenomed patients until antivenom can be administered.
Keywords: Snake venom metalloproteinase; Thrombelastography; Fibrinogen; Carbon monoxide; Iron

Ruthenium compounds are highly regarded as metallo-drug candidates. Many studies have focused their attention on the interaction between ruthenium complexes with their possible biological targets. The interaction of ruthenium complexes with transport proteins, enzymes and peptides is of great importance for understanding their biodistribution and mechanism of action, therefore, the development of an anti-cancer therapy involving ruthenium complexes has recently shifted from DNA targeting towards protein targeting. With the aim of gaining insight into possible interactions between ruthenium complexes with biologically relevant proteins, we have studied the interaction of cis-dichlorobis(2,2′-bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) complex [Ru(II)(dcbpy)2Cl2], which previously showed good potency in photo-dynamic chemotherapy, with bovine serum albumin (BSA), phospholipase A2 (PLA2) and glutathione (GSH). Binding constants and possible number of binding sites to mentioned proteins and peptide are investigated by ultraviolet–visible spectroscopy and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI TOF MS). The complex binding affinities were in the following order: PLA2 > BSA > GSH. Moreover, genotoxic profile of the complex, tested on peripheral blood lymphocytes as a model system, was also promising.
Keywords: Ruthenium (II) complex; Potential metallo-drug; Biological targets; Proteins; Glutathione

Identification of reference genes for quantitative real-time PCR studies in human cell lines under copper and zinc exposure by Talía del Pozo; Ricardo Gutiérrez-Garcia; Mauricio Latorre; Mauricio González; Miriam Suazo (935-944).
Accurate quantification depends on normalization of the measured gene expression data. In particular, gene expression studies with exposure to metals are challenging due their toxicity and redox-active properties. Here, we assessed the stability of potential reference genes in three cell lines commonly used to study metal cell metabolism: Caco-2 (colon), HepG2 (liver) and THP-1 (peripheral blood) under copper (Cu) or zinc (Zn) exposure. We used combined statistical tools to identify the best reference genes from a set of eleven candidates, which included traditional “housekeeping” genes such as GAPDH and B-ACTIN, in cell lines exposed to high and low, Zn and Cu concentrations. The expression stabilities of ATP5B (ATP synthase) and CYC1 (subunits of the cytochrome) were the highest considering the effect of Zn and Cu treatments whereas SDHA (succinate dehydrogenase) was found to be the most unstable gene. Even though the transcriptional effect of Zn and Cu is very different in term of redox properties, the same best reference genes were identified when Zn or Cu treatments were analyzed together. Our results indicate that ATP5B/CYC1 are the best candidates for reference genes after metal exposure, which can be used as a suitable starting point to evaluate gene expression with other metals or in different cell types in human models.
Keywords: Gene expression; Metal exposure; Human cell lines; Gene reference; Real-time RT-PCR

The supplementation of monosilicic acid [Si(OH)4] to the root growing medium is known to protect plants from toxic levels of iron (Fe), copper (Cu) and manganese (Mn), but also to mitigate deficiency of Fe and Mn. However, the physicochemical bases of these alleviating mechanisms are not fully understood. Here we applied low-T electron paramagnetic resonance (EPR) spectroscopy to examine the formation of complexes of Si(OH)4 with Mn2+, Fe3+, and Cu2+ in water and in xylem sap of cucumber (Cucumis sativus L.) grown without or with supply of Si(OH)4. EPR, which is also useful in establishing the redox state of these metals, was combined with measurements of total concentrations of metals in xylem sap by inductive coupled plasma. Our results show that Si(OH)4 forms coordination bonds with all three metals. The strongest interactions of Si(OH)4 appear to be with Cu2+ (1/1 stoichiometry) which might lead to Cu precipitation. In line with this in vitro findings, Si(OH)4 supply to cucumber resulted in dramatically lower concentration of this metal in the xylem sap. Further, it was demonstrated that Si(OH)4 supplementation causes pro-reductive changes that contribute to the maintenance of Fe and, in particular, Mn in the xylem sap in bioavailable 2+ form. Our results shed more light on the intertwined reactions between Si(OH)4 and transition metals in plant fluids (e.g. xylem sap).
Keywords: Monosilicic acid; Transition metals; Xylem sap; EPR; Cucumius sativus L