BioMetals (v.29, #3)

Gadolinium chelates are widely used as contrast media for magnetic resonance imaging. The approved gadolinium-based contrast agents (GBCAs) have historically been considered safe and well tolerated when used at recommended dosing levels. However, for nearly a decade, an association between GBCA administration and the development of nephrogenic systemic fibrosis (NSF) has been recognized in patients with severe renal impairment. This has led to modifications in clinical practices aimed at reducing the potential and incidence of NSF development. Newer reports have emerged regarding the accumulation of gadolinium in various tissues of patients who do not have renal impairment, including bone, brain, and kidneys. Despite the observations of gadolinium accumulation in tissues regardless of renal function, very limited clinical data regarding the potential for and mechanisms of toxicity is available. This significant gap in knowledge warrants retrospective cohort study efforts, as well as prospective studies that involve gadolinium ion (Gd3+) testing in patients exposed to GBCA. This review examines the potential biochemical and molecular basis of gadolinium toxicity, possible clinical significance of gadolinium tissue retention and accumulation, and methods that can limit gadolinium body burden.
Keywords: Gadolinium-based contrast agent (GBCA); Gadolinium toxicity; Gadolinium; Magnetic resonance imaging; Gadolinium toxicity mechanisms; Gadolinium chelation

Microbial siderophore-based iron assimilation and therapeutic applications by Kunhua Li; Wei-Hung Chen; Steven D. Bruner (377-388).
Siderophores are structurally diverse, complex natural products that bind metals with extraordinary specificity and affinity. The acquisition of iron is critical for the survival and virulence of many pathogenic microbes and diverse strategies have evolved to synthesize, import and utilize iron. There has been a substantial increase of known siderophore scaffolds isolated and characterized in the past decade and the corresponding biosynthetic gene clusters have provided insight into the varied pathways involved in siderophore biosynthesis, delivery and utilization. Additionally, therapeutic applications of siderophores and related compounds are actively being developed. The study of biosynthetic pathways to natural siderophores augments the understanding of the complex mechanisms of bacterial iron acquisition, and enables a complimentary approach to address virulence through the interruption of siderophore biosynthesis or utilization by targeting the key enzymes to the siderophore pathways.
Keywords: Siderophore; Biosynthetic pathways; Iron assimilation; Therapeutic application

Gold(I) complex of 1,1′-bis(diphenylphosphino) ferrocene–quinoline conjugate: a virostatic agent against HIV-1 by Ntombenhle Gama; Kamlesh Kumar; Erik Ekengard; Matti Haukka; James Darkwa; Ebbe Nordlander; Debra Meyer (389-397).
HIV infection is known for replicating in proliferating CD+ T-cells. Treatment of these cells with cytostatic (anti-proliferation) compounds such as hydroxyurea interferes with the cells’s ability support HIV replication. Combinations of such cytostatic compounds with proven anti-retroviral drugs (like ddI) are known as virostatic, and have been shown to aid in the control of the infection. The use of two different drugs in virostatic combinations however, carries the risk of adverse effects including drug–drug interactions, which could lead to augmented toxicities and reduced efficacy. Here, a novel digold(I) complex of ferrocene–quinoline (3) was investigated for cytostatic behaviour as well as anti-viral activity which if demonstrated would eliminate concerns of drug–drug interactions. The complex was synthesized and characterized by NMR, FT-IR and mass spectroscopy and the molecular structure was confirmed by X-ray crystallography. Bio-screening involved viability dyes, real time electronic sensing and whole virus assays. The complex showed significant (p = 0.0092) inhibition of virus infectivity (83 %) at 10 ug/mL. This same concentration caused cytostatic behaviour in TZM-bl cells with significant (p < 0.01) S and G2/M phase cell cycle arrest. These data supports 3 as a virostatic agent, possessing both anti-viral and cytostatic characteristics.In the absence of 3, TZM-bl cells were infected by a pseudovirus and this was demonstrated through luminescence in a luciferase assay. Pre-incubation of the virus with 3 decreased luminescence, indicating the anti-viral activity of 3. Complex 3 also showed cytostatic behavior with increased S-phase and G2/M phase cell cycle arrest.
Keywords: HIV-1; Cytostatic; Virostatic; Chloroquine; Gold complexes

Possible role of metal ionophore against zinc induced cognitive dysfunction in d-galactose senescent mice by Kanchan Bharti; Abu Bakar Abdul Majeed; Atish Prakash (399-409).
Metal ionophores are considered as potential anti-dementia agents, and some are currently undergoing clinical trials. Many metals are known to accumulate and distribute abnormally in the aging brain. Alterations in zinc metal homeostasis in the glutaminergic synapse could contribute to ageing and the pathophysiology of Alzheimer’s disease (AD). The present study was designed to investigate the effect of metal ionophores on long term administration of zinc in D-galactose induced senescent mice. The ageing model was established by combined administration of zinc and D-galactose to mice for 6 weeks. A novel metal ionophore, PBT-2 was given daily to zinc-induced d-galactose senescent mice. The cognitive behaviour of mice was monitored using the Morris Water Maze. The anti-oxidant status and amyloidogenic activity in the ageing mouse was measured by determining mito-oxidative parameters and deposition of amyloid β (Aβ) in the brain. Systemic administration of both zinc and D-galactose significantly produced memory deficits, mito-oxidative damage, heightened acetylcholinesterase enzymatic activity and deposition of amyloid-β. Treatment with PBT-2 significantly improved behavioural deficits, biochemical profiles, cellular damage, and curbed the deposition of APP in zinc-induced senescent mice. These findings suggest that PBT-2, acting as a metal protein attenuating compound, may be helpful in the prevention of AD or alleviation of ageing.
Keywords: Ageing; Zinc; Mitochondrial dysfunction; Oxidative stress; Metal ionophore

Ferrous iron content of intravenous iron formulations by Ajay Gupta; Raymond D. Pratt; Alvin L. Crumbliss (411-415).
The observed biological differences in safety and efficacy of intravenous (IV) iron formulations are attributable to physicochemical differences. In addition to differences in carbohydrate shell, polarographic signatures due to ferric iron [Fe(III)] and ferrous iron [Fe(II)] differ among IV iron formulations. Intravenous iron contains Fe(II) and releases labile iron in the circulation. Fe(II) generates toxic free radicals and reactive oxygen species and binds to bacterial siderophores and other in vivo sequestering agents. To evaluate whether differences in Fe(II) content may account for some observed biological differences between IV iron formulations, samples from multiple lots of various IV iron formulations were dissolved in 12 M concentrated HCl to dissociate and release all iron and then diluted with water to achieve 0.1 M HCl concentration. Fe(II) was then directly measured using ferrozine reagent and ultraviolet spectroscopy at 562 nm. Total iron content was measured by adding an excess of ascorbic acid to reduce Fe(III) to Fe(II), and Fe(II) was then measured by ferrozine assay. The Fe(II) concentration as a proportion of total iron content [Fe(III) + Fe(II)] in different lots of IV iron formulations was as follows: iron gluconate, 1.4 and 1.8 %; ferumoxytol, 0.26 %; ferric carboxymaltose, 1.4 %; iron dextran, 0.8 %; and iron sucrose, 10.2, 15.5, and 11.0 % (average, 12.2 %). The average Fe(II) content in iron sucrose was, therefore, ≥7.5-fold higher than in the other IV iron formulations. Further studies are needed to investigate the relationship between Fe(II) content and increased risk of oxidative stress and infections with iron sucrose.
Keywords: Chronic hemodialysis; Ferric iron; Ferrous iron; Intravenous iron; Iron supplementation

The effect of high dose oral manganese exposure on copper, iron and zinc levels in rats by Courtney J. Mercadante; Carolina Herrera; Michael A. Pettiglio; Melanie L. Foster; Laura C. Johnson; David C. Dorman; Thomas B. Bartnikas (417-422).
Manganese is an essential dietary nutrient and trace element with important roles in mammalian development, metabolism, and antioxidant defense. In healthy individuals, gastrointestinal absorption and hepatobiliary excretion are tightly regulated to maintain systemic manganese concentrations at physiologic levels. Interactions of manganese with other essential metals following high dose ingestion are incompletely understood. We previously reported that gavage manganese exposure in rats resulted in higher tissue manganese concentrations when compared with equivalent dietary or drinking water manganese exposures. In this study, we performed follow-up evaluations to determine whether oral manganese exposure perturbs iron, copper, or zinc tissue concentrations. Rats were exposed to a control diet with 10 ppm manganese or dietary, drinking water, or gavage exposure to approximately 11.1 mg manganese/kg body weight/day for 7 or 61 exposure days. While manganese exposure affected levels of all metals, particularly in the frontal cortex and liver, copper levels were most prominently affected. This result suggests an under-appreciated effect of manganese exposure on copper homeostasis which may contribute to our understanding of the pathophysiology of manganese toxicity.
Keywords: Manganese; Copper; Iron; Zinc; Exposure

Short-lived mammals (shrew, mouse) have a less robust metal-responsive transcription factor than humans and bats by Katharina Schmidt; Kurt Steiner; Boyan Petrov; Oleg Georgiev; Walter Schaffner (423-432).
Non-essential “heavy” metals such as cadmium tend to accumulate in an organism and thus are a particular threat for long-lived animals. Here we show that two unrelated, short-lived groups of mammals (rodents and shrews, separated by 100 Mio years of evolution) each have independently acquired mutations in their metal-responsive transcription factor (MTF-1) in a domain relevant for robust transcriptional induction by zinc and cadmium. While key amino acids are mutated in rodents, in shrews an entire exon is skipped. Rodents and especially shrews are unique regarding the alterations of this region. To investigate the biological relevance of these alterations, MTF-1s from the common shrew (Sorex araneus), the mouse, humans and a bat (Myotis blythii), were tested by cotransfection with a reporter gene into cells lacking MTF-1. Whereas shrews only live for 1.5–2.5 years, bats, although living on a very similar insect diet, have a lifespan of several decades. We find that bat MTF-1 is similarly metal-responsive as its human counterpart, while shrew MTF-1 is less responsive, similar to mouse MTF-1. We propose that in comparison to most other mammals, the short-lived shrews and rodents can afford a “lower-quality” system for heavy metal homeostasis and detoxification.
Keywords: Cadmium toxicity; Longevity; Metal homeostasis; Metal regulatory transcription factor; Zinc-induced transcription

Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems by Nadine Taudte; Nadezhda German; Yong-Guan Zhu; Gregor Grass; Christopher Rensing (433-450).
The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron/manganese-uptake systems relevant for growth in defined medium. Based on these results an exit strategy enabling the cell to cope with iron depletion and use of manganese as an alternative for iron could be shown. Such a strategy would also explain why E. coli harbors some iron- or manganese-dependent iso-enzymes such as superoxide dismutases or ribonucleotide reductases. The benefits for gaining a means for survival would be bought with the cost of less efficient metabolism as indicated in our experiments by lower cell densities with manganese than with iron. In addition, this strain was extremely sensitive to the metalloid gallium but this gallium toxicity can be alleviated by low concentrations of manganese.
Keywords: Iron; Manganese; SOD; Gallium

Lipocalin 2 alleviates iron toxicity by facilitating hypoferremia of inflammation and limiting catalytic iron generation by Xia Xiao; Beng San Yeoh; Piu Saha; Rodrigo Aguilera Olvera; Vishal Singh; Matam Vijay-Kumar (451-465).
Iron is an essential transition metal ion for virtually all aerobic organisms, yet its dysregulation (iron overload or anemia) is a harbinger of many pathologic conditions. Hence, iron homeostasis is tightly regulated to prevent the generation of catalytic iron (CI) which can damage cellular biomolecules. In this study, we investigated the role of iron-binding/trafficking innate immune protein, lipocalin 2 (Lcn2, aka siderocalin) on iron and CI homeostasis using Lcn2 knockout (KO) mice and their WT littermates. Administration of iron either systemically or via dietary intake strikingly upregulated Lcn2 in the serum, urine, feces, and liver of WT mice. However, similarly-treated Lcn2KO mice displayed elevated CI, augmented lipid peroxidation and other indices of organ damage markers, implicating that Lcn2 responses may be protective against iron-induced toxicity. Herein, we also show a negative association between serum Lcn2 and CI in the murine model of dextran sodium sulfate (DSS)-induced colitis. The inability of DSS-treated Lcn2KO mice to elicit hypoferremic response to acute colitis, implicates the involvement of Lcn2 in iron homeostasis during inflammation. Using bone marrow chimeras, we further show that Lcn2 derived from both immune and non-immune cells participates in CI regulation. Remarkably, exogenous rec-Lcn2 supplementation suppressed CI levels in Lcn2KO serum and urine. Collectively, our results suggest that Lcn2 may facilitate hypoferremia, suppress CI generation and prevent iron-mediated adverse effects.
Keywords: Lipocalin 2; Iron; Catalytic iron; Inflammation; Anemia of inflammation; Oxidative stress

Pyoverdine and histicorrugatin-mediated iron acquisition in Pseudomonas thivervalensis by Sandra Matthijs; Nathalie Brandt; Marc Ongena; Wafa Achouak; Jean-Marie Meyer; Herbert Budzikiewicz (467-485).
The genome of Pseudomonas thivervalensis LMG 21626T has been sequenced and a genomic, genetic and structural analysis of the siderophore mediated iron acquisition was undertaken. Pseudomonas thivervalensis produces two structurally new siderophores, pyoverdine PYOthi which is typical for P. thivervalensis strains and a closely related strain, and the lipopeptidic siderophore histicorrugatin which is also detected in P. lini. Histicorrugatin consists out of an eight amino acid long peptide which is linked to octanoic acid. It is structurally related to the siderophores corrugatin and ornicorrugatin. Analysis of the proteome for TonB-dependent receptors identified 25 candidates. Comparison of the TonB-dependent receptors of P. thivervalensis with the 17 receptors of its phylogenetic neighbor, P. brassicacearum subsp. brassicacearum NFM 421, showed that NFM 421 shares the same set of receptors with LMG 21626T, including the histicorrugatin receptor. An exception was found for their cognate pyoverdine receptor which can be explained by the observation that both strains produce structurally different pyoverdines. Mass analysis showed that NFM 421 did not produce histicorrugatin, but the analogue ornicorrugatin. Growth stimulation assays with a variety of structurally distinct pyoverdines produced by other Pseudomonas species demonstrated that LMG 21626T and NFM 421 are able to utilize almost the same set of pyoverdines. Strain NFM 421 is able utilize two additional pyoverdines, pyoverdine of P. fluorescens Pf0–1 and P. citronellolis LMG 18378T, these pyoverdines are probably taken up by the FpvA receptor of NFM 421.
Keywords: Histicorrugatin; Pyoverdine; TonB-dependent receptor; Pseudomonas thivervalensis ; Pseudomonas brassicacearum ; Genome

Does titanium in ionic form display a tissue-specific distribution? by Magdalena Golasik; Pawel Wrobel; Magdalena Olbert; Barbara Nowak; Mateusz Czyzycki; Tadeusz Librowski; Marek Lankosz; Wojciech Piekoszewski (487-494).
Most studies have focused on the biodistribution of titanium(IV) oxide as nanoparticles or crystals in organism. But several reports suggested that titanium is released from implant in ionic form. Therefore, gaining insight into toxicokinetics of Ti ions will give valuable information, which may be useful when assessing the health risks of long-term exposure to titanium alloy implants in patients. A micro synchrotron radiation-induced X-ray fluorescence (µ-SRXRF) was utilized to investigate the titanium distribution in the liver, spleen and kidneys of rats following single intravenous or 30-days oral administration of metal (6 mg Ti/b.w.) in ionic form. Titanium was mainly retained in kidneys after both intravenous and oral dosing, and also its compartmentalization in this organ was observed. Titanium in the liver was non-uniformly distributed—metal accumulated in single aggregates, and some of them were also enriched in calcium. Correlation analysis showed that metal did not displace essential elements, and in liver titanium strongly correlated with calcium. Two-dimensional maps of Ti distribution show that the location of the element is characteristic for the route of administration and time of exposure. We demonstrated that µ-SRXRF can provide information on the distribution of titanium in internal structures of whole organs, which helps in enhancing our understanding of the mechanism of ionic titanium accumulation in the body. This is significant due to the popularity of titanium implants and the potential release of metal ions from them to the organism.
Keywords: Titanium; Organ distribution; Rat tissues; Micro synchrotron radiation-induced X-ray fluorescence

Leaf proteome characterization in the context of physiological and morphological changes in response to copper stress in sorghum by Swapan Kumar Roy; Soo Jeong Kwon; Seong-Woo Cho; Abu Hena Mostafa Kamal; Sang-Woo Kim; Kabita Sarker; Myeong-Won Oh; Moon-Soon Lee; Keun-Yook Chung; Zhanguo Xin; Sun-Hee Woo (495-513).
Copper (Cu) is an essential micronutrient required for normal growth and development of plants; however, at elevated concentrations in soil, copper is also generally considered to be one of the most toxic metals to plant cells due to its inhibitory effects against many physiological and biochemical processes. In spite of its potential physiological and economical significance, molecular mechanisms under Cu stress has so far been grossly overlooked in sorghum. To explore the molecular alterations that occur in response to copper stress, the present study was performed in ten-day-old Cu-exposed leaves of sorghum seedlings. The growth characteristics were markedly inhibited, and ionic alterations were prominently observed in the leaves when the seedlings were exposed to different concentrations (0, 100, and 150 µM) of CuSO4. Using two-dimensional gels with silver staining, 643 differentially expressed protein spots (≥1.5-fold) were identified as either significantly increased or reduced in abundance. Of these spots, a total of 24 protein spots (≥1.5-fold) from Cu-exposed sorghum leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Of the 24 differentially expressed proteins from Cu-exposed sorghum leaves, 13 proteins were up-regulated, and 11 proteins were down-regulated. The abundance of most identified protein species, which function in carbohydrate metabolism, stress defense and protein translation, was significantly enhanced, while that of another protein species involved in energy metabolism, photosynthesis and growth and development were severely reduced. The resulting differences in protein expression patterns together with related morpho-physiological processes suggested that these results could help to elucidate plant adaptation to Cu stress and provide insights into the molecular mechanisms of Cu responses in C4 plants.
Keywords: Sorghum; Copper; Leaf; Proteomics; 2-DE

Metal complexes of 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone: cytotoxic activity and investigation on the mode of action of the gold(III) complex by Luciana B. P. Sâmia; Gabrieli L. Parrilha; Jeferson G. Da Silva; Jonas P. Ramos; Elaine M. Souza-Fagundes; Silvia Castelli; Venn Vutey; Alessandro Desideri; Heloisa Beraldo (515-526).
Complexes [Au(PyCT4BrPh)Cl]Cl (1), [Pt(PyCT4BrPh)Cl]0.5KCl (2), and [Pd(PyCT4BrPh)Cl]KCl (3) were obtained with 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCT4BrPh). Although complexes (2) and (3) did not exhibit potent cytotoxic activity, HPyCT4BrPh and its gold(III) complex (1) proved to be highly cytotoxic against HL-60 (human promyelocytic leukemia) and THP-1 (human monocytic leukemia) cells, and against MDA-MB 231 and MCF-7 (human breast adenocarcinoma) solid tumor cells. Except for HL-60 cells, upon coordination to gold(III) a 2- to 3-fold increase in the cytotoxic effect was observed. An investigation on the possible biological targets of the gold(III) complex was carried out. Complex (1) but not the free thiosemicarbazone inhibits the enzymatic activity of thioredoxin reductase (TrxR). The affinity of 1 for TrxR suggests metal binding to a selenol residue in the active site of the enzyme. While HPyCT4BrPh was inactive, 1 was able to inhibit topoisomerase IB (Topo IB) activity. Hence, inhibition of TrxR and Topo IB could contribute to the mechanism of cytotoxic action of complex (1).
Keywords: Chalcone; Thiosemicarbazone; Metal complexes; Cytotoxic activities; Thioredoxin reductase; Topoisomerase IB

Cooperative adsorption of critical metal ions using archaeal poly-γ-glutamate by Yuichi Hakumai; Shota Oike; Yuka Shibata; Makoto Ashiuchi (527-534).
Antimony, beryllium, chromium, cobalt (Co), gallium (Ga), germanium, indium (In), lithium, niobium, tantalum, the platinoids, the rare-earth elements (including dysprosium, Dy), and tungsten are generally regarded to be critical (rare) metals, and the ions of some of these metals are stabilized in acidic solutions. We examined the adsorption capacities of three water-soluble functional polymers, namely archaeal poly-γ-glutamate (L-PGA), polyacrylate (PAC), and polyvinyl alcohol (PVA), for six valuable metal ions (Co2+, Ni2+, Mn2+, Ga3+, In3+, and Dy3+). All three polymers showed apparently little or no capacity for divalent cations, whereas L-PGA and PAC showed the potential to adsorb trivalent cations, implying the beneficial valence-dependent selectivity of anionic polyelectrolytes with multiple carboxylates for metal ions. PVA did not adsorb metal ions, indicating that the crucial role played by carboxyl groups in the adsorption of crucial metal ions cannot be replaced by hydroxyl groups under the conditions. In addition, equilibrium studies using the non-ideal competitive adsorption model indicated that the potential for L-PGA to be used for the removal (or collection) of water-soluble critical metal ions (e.g., Ga3+, In3+, and Dy3+) was far superior to that of any other industrially-versatile PAC materials.
Keywords: Critical metals; Archaeal exopolymer; Poly-γ-glutamate; Cooperative adsorption

Cisplatin and its dibromido analogue: a comparison of chemical and biological profiles by Tiziano Marzo; Gianluca Bartoli; Chiara Gabbiani; Gennaro Pescitelli; Mirko Severi; Serena Pillozzi; Elena Michelucci; Benedetta Fiorini; Annarosa Arcangeli; Adóracion G. Quiroga; Luigi Messori (535-542).
The dibromido analogue of cisplatin, cis-PtBr2(NH3)2 (cisPtBr2 hereafter), has been prepared and characterised. Its solution behaviour in standard phosphate buffer, at pH 7.4, was investigated spectrophotometrically and found to reproduce quite closely that of cisplatin; indeed, progressive sequential release of the two halide ligands typically occurs as in the case of cisplatin, with a roughly similar kinetics. Afterward, patterns of reactivity toward model proteins and standard ctDNA were explored and the nature of the resulting interactions elucidated. The antiproliferative properties were then evaluated in four representative cancer cell lines, namely A549 (human lung cancer), HCT116 (human colon cancer), IGROV-1 (human ovarian cancer) and FLG 29.1 (human acute myeloid leukaemia). Cytotoxic properties in line with those of cisplatin were highlighted. From these studies an overall chemical and biological profile emerges for cisPtBr2 closely matching that of cisplatin; the few slight, but meaningful differences that were underscored might be advantageously exploited for clinical application.
Keywords: Cancer; Platinum; Cisplatin analogues; Mass spectrometry; Circular dichroism

Selenium and mercury levels in rat liver slices co-treated with diphenyl diselenide and methylmercury by Cristiane Lenz Dalla Corte; Angélica Ramos; Clarissa Marques Moreira dos Santos; Valderi Luiz Dressler; João Batista Teixeira da Rocha (543-550).
Organoseleno-compounds have been investigated for its beneficial effects against methylmercury toxicity. In this way, diphenyl diselenide (PhSe)2 was demonstrated to decrease Hg accumulation in mice, protect against MeHg-induced mitochondrial dysfunction, and protect against the overall toxicity of this metal. In the present study we aimed to investigate if co-treatment with (PhSe)2 and MeHg could decrease accumulation of Hg in liver slices of rats. Rat liver slices were co-treated with (PhSe)2 (0.5; 5 µM) and/or MeHg (25 µM) for 30 min at 37 °C and Se and Hg levels were measured by inductively coupled plasma mass spectrometry (ICP-MS) in the slices homogenate, P1 fraction, mitochondria and incubation medium. Co-treatment with (PhSe)2 and MeHg did not significantly alter Se levels in any of the samples when compared with compounds alone. In addition, co-treatment with (PhSe)2 and MeHg did not decrease Hg levels in any of the samples tested, although, co-incubation significantly increased Hg levels in homogenate. We suggest here that (PhSe)2 could exert its previously demonstrated protective effects not by reducing MeHg levels, but forming a complex with MeHg avoiding it to bind to critical molecules in cell.
Keywords: Methylmercury; Selenium; ICP-MS; Mitochondria; Liver slices