BioMetals (v.27, #4)

The many “faces” of copper in medicine and treatment by Anna Hordyjewska; Łukasz Popiołek; Joanna Kocot (611-621).
Copper (Cu) is an essential microelement found in all living organisms with the unique ability to adopt two different redox states—in the oxidized (Cu2+) and reduced (Cu+). It is required for survival and serves as an important catalytic cofactor in redox chemistry for proteins that carry out fundamental biological functions, important in growth and development. The deficit of copper can result in impaired energy production, abnormal glucose and cholesterol metabolism, increased oxidative damage, increased tissue iron (Fe) accrual, altered structure and function of circulating blood and immune cells, abnormal neuropeptides synthesis and processing, aberrant cardiac electrophysiology, impaired myocardial contractility, and persistent effects on the neurobehavioral and the immune system. Increased copper level has been found in several disorders like e.g.: Wilson’s disease or Menke’s disease. New findings with the great potential for impact in medicine include the use of copper-lowering therapy for antiangiogenesis, antifibrotic and anti-inflammatory purposes. The role of copper in formation of amyloid plaques in Alzheimer’s disease, and successful treatment of this disorder in rodent model by copper chelating are also of interest. In this work we will try to describe essential aspects of copper in chosen diseases. We will represent the evidence available on adverse effect derived from copper deficiency and copper excess. We will try to review also the copper biomarkers (chosen enzymes) that help reflect the level of copper in the body.
Keywords: Copper; Wilson’s disease; Menke’s disease; Enzymes; Alzheimer’s disease; Metallothionein; Aceruloplasmin; Copper complexes

Siderophore production by actinobacteria by Wenfeng Wang; Zhiqi Qiu; Hongming Tan; Lixiang Cao (623-631).
Produced by bacteria, fungi and plants, siderophores are low-molecular-weight chelating agents (200–2,000 Da) to facilitate uptake of iron (Fe). They play an important role in extracellular Fe solubilization from minerals to make it available to microorganisms. Siderophores have various chemical structures and form a family of at least 500 different compounds. Some antibiotics (i.e., albomycins, ferrimycins, danomycins, salmycins, and tetracyclines) can bind Fe and some siderophores showed diverse biological activities. Functions and applications of siderophores derived from actinobacteria were reviewed to better understand the diverse metabolites.
Keywords: Actinobacteria; Fe; Siderophores; Sideromycin

All fluorescent pseudomonads (Pseudomonas aeruginosa, P. putida, P. fluorescens, P. syringae and others) are known to produce the high-affinity peptidic yellow-green fluorescent siderophore pyoverdine. These siderophores have peptide chains that are quite diverse and more than 50 pyoverdine structures have been elucidated. In the majority of the cases, a Pseudomonas species is also able to produce a second siderophore of lower affinity for iron. Pseudomonas fluorescens ATCC 17400 has been shown to produce a unique second siderophore, (thio)quinolobactin, which has an antimicrobial activity against the phytopathogenic Oomycete Pythium debaryanum. We show that this strain has the capacity to utilize 16 different pyoverdines, suggesting the presence of several ferripyoverdine receptors. Analysis of the draft genome of P. fluorescens ATCC 17400 confirmed the presence of 55 TonB-dependent receptors, the largest so far for Pseudomonas, among which 15 are predicted to be ferripyoverdine receptors (Fpv). Phylogenetic analysis revealed the presence of two different clades containing ferripyoverdine receptors, with sequences similar to the P. aeruginosa type II FpvA forming a separate cluster. Among the other receptors we confirmed the presence of the QbsI (thio)quinolobactin receptor, an ferri-achromobactin and an ornicorrugatin receptor, several catecholate and four putative heme receptors. Twenty five of the receptors genes were found to be associated with genes encoding extracytoplasmic sigma factors (ECF σ) and transmembrane anti-σ sensors.
Keywords: Pseudomonas fluorescens ; Siderophores; Pyoverdines; Quinolobactin; Heme; TonB-dependent receptors

CCS mRNA transcripts and serum CCS protein as copper marker in adults suffering inflammatory processes by Magdalena Araya; Ricardo Gutiérrez; Miguel Arredondo (645-652).
The chaperone to Zn–Cu superoxide dismutase (CCS) has been postulated as a candidate copper indicator, changing in a consistent manner in induced and recovered copper deficiency, in experimental cell and animal models. In real life people have various conditions that may modify molecules acting as acute phase proteins, such as serum ceruloplasmin and copper concentration and could alter CCS responses. With the hypothesis that CCS mRNA transcripts and protein would be different in individuals suffering inflammatory processes in comparison to healthy individuals, we assessed adult individuals who, although not ill had conditions known to induce variable degrees of inflammation. Screening of 600 adults resulted in two study groups, formed on the basis of their clinical history and levels of serum C reactive protein (CRP): Group 1 (n = 61, mean (range) CRP = 0.9 (0.3–2.0 mg/dL) and Group 2 (n = 150, mean (range) CRP = 6.1 (4.3–8.7 mg/dL). Results showed that mRNA transcripts relative abundance was not different for CCS, MTIIA, TNF-alpha and Cu–Zn-SOD by group (p > 0.05, one way Anova), nor between sexes (p > 0.05, one way Anova). Distribution of CCS mRNA transcripts and CCS protein in serum did not show any differences or trends. Results disproved our hypothesis that CCS abundance of transcripts and CCS protein would be different in individuals suffering inflammatory processes, adding further support to the idea that CCS may be a copper marker.
Keywords: Copper; Marker; CCS transcripts; CCS protein; Humans

Energy-coupling factor (ECF) transporters form a distinct group of ABC-type micronutrient importers in prokaryotes that do not contain extracytoplasmic, soluble substrate-binding proteins. Instead, they consist of a transmembrane substrate-specific S component that interacts with a module composed of a moderately conserved transmembrane (T) component and ABC ATPases. The majority of S components is considered to act as high-affinity binding proteins that strictly depend on their cognate T and ATPase units for transport activity. For a fraction of biotin-specific S units, however, transport activity was demonstrated in their solitary state. Here, we compared the activities of nickel- and cobalt-specific ECF transporters in the presence and absence of their T and ATPase units. Accumulation assays with radioactive metal ions showed that the truncated transporters led to approx. 25 % of cell-bound radioactivity compared to the holotransporters. Activity of urease, an intracellular nickel-dependent enzyme, was used as a reporter and clearly indicated that the cell-bound radioactivity correlates with the cytoplasmic metal concentration. The results demonstrate that S units of metal transporters not only bind their substrates on the cell surface but mediate transport across the membrane, a finding of general importance on the way to understand the mechanism of ECF transporters.
Keywords: Metal uptake; ABC transporter; Metal binding; Urease

Glutaredoxin1 protects neuronal cells from copper-induced toxicity by Michael A. Cater; Stephanie Materia; Zhiguang Xiao; Kamil Wolyniec; Susan M. Ackland; Yann W. Yap; Nam Sang Cheung; Sharon La Fontaine (661-672).
Glutaredoxin1 (GRX1) is a glutathione (GSH)-dependent thiol oxidoreductase. The GRX1/GSH system is important for the protection of proteins from oxidative damage and in the regulation of protein function. Previously we demonstrated that GRX1/GSH regulates the activity of the essential copper-transporting P1B-Type ATPases (ATP7A, ATP7B) in a copper-responsive manner. It has also been established that GRX1 binds copper with high affinity and regulates the redox chemistry of the metallochaperone ATOX1, which delivers copper to the copper-ATPases. In this study, to further define the role of GRX1 in copper homeostasis, we examined the effects of manipulating GRX1 expression on copper homeostasis and cell survival in mouse embryonic fibroblasts and in human neuroblastoma cells (SH-SY5Y). GRX1 knockout led to cellular copper retention (especially when cultured with elevated copper) and reduced copper tolerance, while in GRX1-overexpressing cells challenged with elevated copper, there was a reduction in both intracellular copper levels and copper-induced reactive oxygen species, coupled with enhanced cell proliferation. These effects are consistent with a role for GRX1 in regulating ATP7A-mediated copper export, and further support a new function for GRX1 in neuronal copper homeostasis and in protection from copper-mediated oxidative injury.
Keywords: Glutaredoxin1; Metal; Copper; Oxidative stress; Thiol oxidoreductase; Glutathione

Antibacterial effect and proteomic analysis of graphene-based silver nanoparticles on a pathogenic bacterium Pseudomonas aeruginosa by Tingting He; Haitao Liu; Yazhou Zhou; Juan Yang; Xiaonong Cheng; Haifeng Shi (673-682).
Graphene-based silver nanoparticles (Ag NPs–GE) material has been developed and demonstrated antibacterial effect against Escherichia coli and Pseudomonas aeruginosa. In this study, the antibacterial activity and mechanism on P. aeruginosa were investigated. The experiments results showed the minimum bactericidal concentration of Ag NPs–GE to P. aeruginosa is 20 μg/ml. When P. aeruginosa were exposed to 20 μg/ml Ag NPs–GE for 1 h, the cell wall was breakdown. In order to study the mechanism of antibacterial effect of Ag NPs–GE, two-dimensional electrophoresis was carried out to compare the protein expressional profiles of P. aeruginosa exposed to 5 μg/ml Ag NPs–GE or 5 μg/ml AgNO3 with the untreated bacteria. Identification of differentially expressed protein was performed by MALDI–TOF/TOF MS. The change of proteomic profile induced by Ag NPs–GE was distinct from that induced by AgNO3. Seven identified proteins were found induced and nine proteins were suppressed by Ag NPs–GE. Five identified proteins were found induced and twenty proteins were suppressed by AgNO3. In addition, either Ag NPs–GE or AgNO3 suppressed the expression of eight proteins, amidotransferase, 30S ribosomal protein S6, bifunctional proline dehydrogenase/pyrroline-5-carboxylate dehydrogenase, arginyl-tRNA synthetase, nitroreductase, acetolactate synthase 3, methionyl-tRNA synthetase and periplasmic tail-specific protease. Furthermore, gene ontology analysis and KEGG pathway analysis were used to characterize the functions of those proteins.
Keywords: Silver nanoparticles; Proteomics; 2-DE; Pseudomonas aeruginosa

Streptococcus pneumoniae secretes a glyceraldehyde-3-phosphate dehydrogenase, which binds haemoglobin and haem by Zelene Edith Vázquez-Zamorano; Marco Antonio González-López; María Elena Romero-Espejel; Elisa Irene Azuara-Liceaga; Mavil López-Casamichana; José de Jesús Olivares-Trejo (683-693).
Streptococcus pneumoniae is a gram positive encapsulated bacterium responsible of septicaemia and upper respiratory infections in children. This pathogen requires iron to survive in the host, which it can obtain of haemoglobin (Hb) or haem. Only two Hb-binding membrane proteins have been identified up to now. However it is unknown whether this pathogen secretes proteins in order to scavenge iron from the Hb or haem. Therefore, in order to explore these possibilities, cellular growth of S. pneumoniae was tested with several alternative iron supplies. The bacterial growth was supported with iron, Hb and haem. Additionally, S. pneumoniae expressed and secreted a protein of 38 kDa which was purified and characterized as Hb and haem-binding protein. This protein was also identified by mass spectrometry as glyceraldehyde-3-phosphate dehydrogenase. Our overall results suggest that S. pneumoniae secretes a protein capable of binding two usefull iron sources for this bacterium (Hb and haem). This protein could be playing a dynamic role in the success of the invasive and infective processes of this pathogen.
Keywords: Streptococcus pneumoniae ; Haem; Haemoglobin; Glyceraldehyde-3-phospate dehydrogenase; Secreted

Mutation of environmental mycobacteria to resist silver nanoparticles also confers resistance to a common antibiotic by Curtis Larimer; Mohammad Shyful Islam; Anil Ojha; Ian Nettleship (695-702).
Non-tuberculous mycobacteria are a threat to human health, gaining entry to the body through contaminated water systems, where they form persistent biofilms despite extensive attempts at disinfection. Silver is a natural antibacterial agent and in nanoparticle form activity is increased by a high surface area. Silver nanoparticles (AgNPs) have been used as alternative disinfectants in circulating water systems, washing machines and even clothing. However, nanoparticles, like any other antibiotic that has a pervasive durable presence, carry the risk of creating a resistant population. In this study Mycobacterium smegmatis strain mc2155 was cultured in AgNP enriched agar such that only a small population survived. Surviving cultures were isolated and re-exposed to AgNPs and AgNO3 and resistance to silver was compared to a negative control. After only a single exposure, mutant M. smegmatis populations were resistant to AgNPs and AgNO3. Further, the silver resistant mutants were exposed to antibiotics to determine if general resistance had been conferred. The minimum inhibitory concentration of isoniazid was four times higher for silver resistant mutants than for strain mc2155. However, core resistance was not conferred to other toxic metal ions. The mutants had lower resistance to CuSO4 and ZnSO4 than the mc2155 strain.
Keywords: Silver; Nanoparticles; Mycobacteria; Mutant resistance; Antibiotic resistance

Deregulation of transition metals homeostasis is a key feature of cadmium toxicity in Salmonella by Serena Ammendola; Mauro Cerasi; Andrea Battistoni (703-714).
Cadmium is a highly toxic metal whose presence in the environment represents a challenge for all forms of life. To improve our knowledge on cadmium toxicity, we have explored Salmonella Typhimurium responses to this metal. We have found that cadmium induces the concomitant expression of the cation efflux pump ZntA and of the high affinity zinc import system ZnuABC. This observation suggests that cadmium accumulation within the cell induces a condition of apparent zinc starvation, possibly due to the ability of this metal to compete with zinc for the metal binding site of proteins. This hypothesis is supported by the finding that strains lacking ZntA or ZnuABC are hyper-susceptible to cadmium and that the cadmium-induced growth defect of a znuABC mutant strain is largely relieved by zinc supplementation. A similar growth defect was observed for a mutant with impaired ability to acquire iron, whereas cadmium does not affect growth of a strain defective in manganese import. Cadmium also influences the expression and activity of the two cytoplasmic superoxide dismutases FeSOD and MnSOD, which are required to control cadmium-mediate oxidative stress. Exposure to cadmium causes a reduction of FeSOD activity in Salmonella wild type and the complete abrogation of its expression in the strain defective in iron import. In contrast, although MnSOD intracellular levels increase in response to cadmium, we observed discrepancies between protein levels and enzymatic activity which are suggestive of incorporation of non-catalytic metals in the active site or to cadmium-mediated inhibition of manganese import. Our results indicate that cadmium interferes with the ability of cells to manage transition metals and highlight the close interconnections between the homeostatic mechanisms regulating the intracellular levels of different metals.
Keywords: Cadmium toxicity; Salmonella ; Metal homeostasis; Zinc transport; Superoxide dismutases

Loss of COMMD1 and copper overload disrupt zinc homeostasis and influence an autism-associated pathway at glutamatergic synapses by Tanja Baecker; Katharina Mangus; Stefanie Pfaender; Resham Chhabra; Tobias M. Boeckers; Andreas M. Grabrucker (715-730).
Recent studies suggest that synaptic pathology in autism spectrum disorder (ASD) might be caused by the disruption of a signaling pathway at excitatory glutamatergic synapses, which can be influenced by environmental factors. Some factors, such as prenatal zinc deficiency, dysfunction of metallothioneins as well as deletion of COMMD1, all affect brain metal-ion homeostasis and have been associated with ASD. Given that COMMD1 regulates copper levels and that copper and zinc have antagonistic properties, here, we followed the idea that copper overload might induce a local zinc deficiency affecting key players of a putative ASD pathway such as ProSAP/Shank proteins as reported before. Our results show that increased copper levels indeed interfere with intracellular zinc concentrations and affect synaptic ProSAP/Shank levels, which similarly are altered by manipulation of copper and zinc levels through overexpression and knockdown of COMMD1. In line with this, acute and prenatal copper overload lead to local zinc deficiencies in mice. Pups exposed to prenatal copper overload furthermore show a reduction in ProSAP/Shank protein levels in the brain as well as a decreased NMDAR subunit 1 concentration. Thus, it might be likely that brain metal ion status influences a distinct pathway in excitatory synapses associated with genetic forms of ASD.
Keywords: ProSAP; ASD; Shank3; Shank2; COMMD1; Zn2+ ; Synapse; PSD; Cu2+

Prior studies have demonstrated that the inner ear can accumulate a variety of essential and potentially toxic heavy metals including manganese, lead, cobalt and cadmium. Metal accumulation is regulated in part by the functionality and affinity of these metals for the different transport systems responsible for uptake across the blood-cochlea barrier and their subsequent uptake into the different cells within the inner ear. Transport of these metals across cell membranes occurs by many of the same transport systems which include DMT1, Zip8 and Zip14. All three metal transporters have been identified in the cochlea based on quantitative PCR analysis. Prior studies in our laboratory examined the localization and developmental changes of DMT1 in rat cochlea and since the two Zip proteins are also likely to contribute to the transport of essential and non-essential divalent cations, we performed immunolabeling experiments in postnatal day three rat pups and adult rats. For comparison, we also immunolabeled the specimens with antibody against transferrin receptor 1 (TfR1) which is important in DMT1-mediated transport of Fe and Mn. Results presented in this paper demonstrate that the cellular and subcellular distribution of both Zip8 and Zip14 within the different components of the inner ear are distinct from that of DMT1. Nuclear localization for both Zip transporters as well as TfR1 was observed. The findings also reveal that the selective distribution of the three proteins was altered during development presumably to meet the changing needs of the cells to maintain normal and functional levels of iron and other essential metals.
Keywords: Zip8; Zip14; Transferrin receptor; Hair cells; Spiral ganglion neurons; Stria vascularis; Metal transporters

Assessment of in vivo antimicrobial activity of the carbene silver(I) acetate derivative SBC3 using Galleria mellonella larvae by Niall Browne; Frauke Hackenberg; Wojciech Streciwilk; Matthias Tacke; Kevin Kavanagh (745-752).
The antimicrobial drug candidate 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate (SBC3) was evaluated for its ability to function in vivo using larvae of Galleria mellonella. A SBC3 concentration of 25 μg/ml inhibited the growth of Staphylococcus aureus by 71.2 % and Candida albicans by 86.2 % in vitro. Larvae inoculated with 20 μl of SBC3 solution showed no ill effects up to a concentration of 250 μg/ml but administration of 500 μg/ml resulted in a 40 % reduction in larval survival and administration of a dose of 1,000 μg/ml resulted in total larval death at 24 h. Larvae inoculated with S. aureus or C. albicans and subsequently administered SBC3 showed increased survival. Administration of SBC3 to larvae did not boost the insect immune response as indicated by lack of an increase in the density of circulating haemocytes (immune cells). The abundance of a number of proteins involved in the insect immune response was reduced in larvae that received 20 μl SBC3 solution of 100 μg/ml. This is the first demonstration of the in vivo activity of SBC3 against S. aureus and C. albicans and demonstrates that SBC3 does not stimulate a non-specific immune response in larvae.
Keywords: Antimicrobial drug; Candida albicans ; Carbene-silver complex; Galleria mellonella ; In vivo toxicity; Staphylococcus aureus

Gadolinium promoted proliferation in mouse embryo fibroblast NIH3T3 cells through Rac and PI3K/Akt signaling pathways by Liming Shen; Aochu Yang; Pengwei Yao; Xiaohong Sun; Cheng Chen; Cuiping Mo; Lei Shi; Youjiao Chen; Qiong Liu (753-762).
Nephrogenic systemic fibrosis (NSF) is a fibrosing disorder disease developed in patients with underlying renal insufficiency following exposure to gadolinium-based contrast agents (GBCAs). Previous studies have demonstrated that GdCl3 can promote NIH3T3 fibroblast cell proliferation, which provide a new clue to the role of GBCAs in the development of NSF. In the present study, we further clarify the molecular mechanism of Gd-promoted proliferation. The results showed that intervention with the Rac inhibitor NSC23766 abrogated Gd-promoted proliferation. The levels of active Rac1 significantly increased in Gd-treated cells detected by pull-down assays. In addition, the phosphorylation of Akt was significantly elevated in the treatment group, which was blocked by NSC23766. NSC23766 also reduced the migration of NIH3T3 cells enhanced by Gd. Moreover, the F-actin cytoskeleton was strengthened and the mitotic cell numbers was significantly increased after exposure to Gd. These results suggest that Rac and PI3K/Akt signaling pathways, as well as integrin-mediated signal pathway may play important roles in Gd-induced cell proliferation. In addition, under serum-free condition, Gd could decrease ROS accumulation and increase NIH3T3 cell survival.
Keywords: Gadolinium chloride; NIH3T3 cells; Proliferation; Nephrogenic systemic fibrosis

Distal–proximal crosstalk in the heme binding pocket of the NO sensor DNR by Francesca Cutruzzolà; Alessandro Arcovito; Giorgio Giardina; Stefano della Longa; Paola D’Angelo; Serena Rinaldo (763-773).
In the opportunistic pathogen Pseudomonas aeruginosa the denitrification process is triggered by nitric oxide (NO) and plays a crucial role for the survival in chronic infection sites as a microaerobic–anaerobic biofilm. This respiratory pathway is transcriptionally induced by DNR, an heme-based gas sensor which positively responds to NO. Molecular details of the NO sensing mechanism employed by DNR are now emerging: we recently reported an in vitro study which dissected, for the first time, the heme-iron environment and identified one of the heme axial ligand (i.e. His187), found to be crucial to respond to NO. Nevertheless, the identification of the second heme axial ligand has been unsuccessful, given that a peculiar phenomenon of ligand switching around the heme-iron presumably occurs in DNR. The unusual heme binding properties of DNR could be due to the remarkable flexibility in solution of DNR itself, which, in turns, is crucial for the sensing activity; protein flexibility and dynamics indeed represent a common strategy employed by heme-based redox sensors, which present features deeply different from those of “canonical” hemeproteins. The capability of DNR to deeply rearrange around the heme-iron as been here demonstrated by means of spectroscopic characterization of the H167A/H187A DNR double mutant, which shows unusual kinetics of binding of NO and CO. Moreover, we show that the alteration (such as histidines mutations) of the distal side of the heme pocket is perceived by the proximal one, possibly via the DNR protein chain.
Keywords: Nitric oxide; Transcription factor; Gas sensor; Denitrification

Interaction of U(VI) with Schizophyllum commune studied by microscopic and spectroscopic methods by Alix Günther; Johannes Raff; Mohamed Larbi Merroun; André Roßberg; Erika Kothe; Gert Bernhard (775-785).
Biosorption of actinides like uranium by fungal cells can play an important role in the mobilization or immobilization of these elements in nature. Sorption experiments of U(VI) with Schizophyllum commune at different initial uranium concentrations and varying metal speciation showed high uranium sorption capacities in the pH range of 4–7. A combination of high angle annular dark-field and scanning transmission electron microscopy analysis (HAADF-STEM) showed that living mycelium cells accumulate uranium at the cell wall and intracellular. For the first time the fluorescence properties of uranium accumulates were investigated by means of time-resolved laser-induced fluorescence spectroscopy (TRLFS) beside the determination of corresponding structural parameters using X-ray absorption fine structure spectroscopy (EXAFS). While the oxidation state of uranium remained unchanged during sorption, uranium speciation changed significantly. Extra and intracellular phosphate groups are mainly responsible for uranium binding. TRLFS spectra clearly show differences between the emission properties of dissolved species in the initial mineral medium and of uranium species on fungi. The latter were proved to be organic and inorganic uranyl phosphates formed depending on the uranyl initial concentration and in some cases on pH.
Keywords: Fungi; Uranium; HAADF-STEM; TRLFS; EXAFS

Drug repositioning: auranofin as a prospective antimicrobial agent for the treatment of severe staphylococcal infections by Maria Iris Cassetta; Tiziano Marzo; Stefania Fallani; Andrea Novelli; Luigi Messori (787-791).
Auranofin, (AF), a gold(I) complex in clinical use for the therapy of rheumatoid arthritis, is reported here to produce remarkable bactericidal effects in vitro against Staphylococcus sp. Noticeably, a similar antimicrobial action and potency are also noticed toward a few methicillin-resistant Staphylococcus aureus strains but not toward Escherichia coli. The time and concentration dependencies of the antimicrobial actions of AF have been characterized through recording time kill curves, and a concentration dependent profile highlighted. Overall, the present results point out that auranofin might be quickly and successfully repurposed for the treatment of severe bacterial infections due to resistant Staphylococci.
Keywords: Auranofin; Antimicrobial drugs; Gold compounds; Drug repositioning; Staphyloccocal infections

The voltage-gated proton channel Hv1 functions as a dimer, in which the intracellular C-terminal domain of the protein is responsible for the dimeric architecture and regulates proton permeability. Although it is well known that divalent metal ions have effect on the proton channel activity, the interaction of divalent metal ions with the channel in detail is not well elucidated. Herein, we investigated the interaction of divalent metal ions with the C-terminal domain of human Hv1 by CD spectra and fluorescence spectroscopy. The divalent metal ions binding induced an obvious conformational change at pH 7 and a pH-sensitive reduction of thermostability in the C-terminal domain. The interactions were further estimated by fluorescence spectroscopy experiments. There are at least two binding sites for divalent metal ions binding to the C-terminal domain of Hv1, either of which is close to His244 or His266 residue. The binding of Zn2+ to the two sites both enhanced the fluorescence of the protein at pH 7, whereas the binding of other divalent metal ions to the two sites all resulted fluorescence quenching. The orders of the strength of divalent metal ions binding to the two sites from strong to weak are both Co2+, Ca2+, Ni2+, Mg2+, and Mn2+. The strength of Ca2+, Co2+, Mg2+, Mn2+ and Ni2+ binding to the site close to His244 is stronger than that of these divalent metal ions binding to the site close to His266.
Keywords: Voltage-gated proton channel Hv1; Carboxyl-terminal domain; Divalent metal ion; Interaction