BioMetals (v.21, #4)

Al-toxicity studies in yeast using gallium as an aluminum analogue by Raymond J. Ritchie; Shyam Sundar Raghupathi (379-393).
Aluminum (Al) is normally present in soils as the insoluble, harmless Al2O3. The highly toxic Al3+ and AlOH2+ monomeric cations are formed in acid soils but there is little consensus on the physiological basis of Al toxicity in plants. A major factor that has retarded progress in understanding aluminum toxicity in vascular plants is the lack of a convenient radioisotope for Al. Yeast and vascular plants share similar membrane transport mechanisms and so yeast (Saccharomyces cerevisiae) provides a convenient model system for studies of Al-toxicity. Al and gallium (Ga) have closely similar toxic effects on the yeast cells (Ki ≈ 100 mmol m−3) and Ga3+ and Al3+, respond similarly to pH and are both reversible by a chelation agent (citric acid). We tested the feasibility of using 67Ga radioisotope as a tracer for Al transport with the view of using it to investigate the mechanism of Al uptake and toxicity in plants. The clinically available 67Ga citrate is unsuitable to use as an aluminum analogue because the chelated form is not toxic. Arrangements need to be made for it to be supplied as 67GaCl3. Large amounts of 67Ga rapidly bind to the cell wall of yeasts with a t1/2 of ≈1 s. There is a very slow net uptake of 67Ga into a second phase, presumably the cytoplasm. Uptake into the slow phase has a Vmax of only ≈16 ± 4 pmol m−2 s−1 (n = 16). The Km of 67Ga uptake could not be precisely determined but is below 100 mmol m−3 (45 ± 42 mmol m−3, n = 16).
Keywords: Saccharomyces cerevisiae ; Aluminum; Al-toxicity; Gallium; Ga-toxicity; Allotropy; Analogue tracer

This study reports on the presence of a putatively symbiotic bacterial flora within the byssus plaque of the deep sea hydrothermal mussel Bathymodiolus azoricus, contributing to metal sequestration/deposition and testing positive to methane oxidizing symbiont-specific fluorescent probes. Combining an array of approaches including histology, electron microscopy, X-ray microanalysis, analytical chemistry, and microbiology we provide evidence for the frequently assumed, but rarely shown influence of prokaryotes on the biogeochemical cycling of metals as well as inorganic C sources (i.e., methane) at deep sea hydrothermal vents. Our results indicate that in spite of its antibacterial protective sheath, the byssus plaque gives access to a whole range of prokaryotic organisms which may be responsible for the extremely high concentration of metallic elements (Fe, Cu, Zn, Mn, Co, Mo, Cd, Pb and Hg) measured in this attachment organ. The very high levels of metals in byssus, together with its frequent renewal rate due to the dynamic nature of the habitat, suggest that intra-byssal bacteria may have a major influence on biomineralisation/deposition of metals. The presence of a methanotroph morphotype within the byssus plaque was confirmed by FISH and TEM. The implications of the biogeochemical cycling of metals and methane at hydrothermal vents are discussed.
Keywords: Hydrothermal vent; Bathymodiolus azoricus ; Biomineralisation; Byssus; Endosymbiont; Fe-oxidising bacteria

Zinc transporter mRNA expression in the RWPE-1 human prostate epithelial cell line by Amy L. Albrecht; Seema Somji; Mary Ann Sens; Donald A. Sens; Scott H. Garrett (405-416).
The human prostate gland undergoes a prominent alteration in Zn+2 homeostasis during the development of prostate cancer. The goal of the present study was to determine if the immortalized human prostate cell line (RWPE-1) could serve as a model system to study the role of zinc in prostate cancer. The study examined the expression of mRNA for 19 members of the zinc transporter gene family in normal prostate tissue, the prostate RWPE-1 cell line, and the LNCaP, DU−145 and PC−3 prostate cancer cell lines. The study demonstrated that the expression of the 19 zinc transporters was similar between the RWPE-1 cell line and the in situ prostate gland. Of the 19 zinc transporters, only 5 had levels that were different between the RWPE-1 cells and the tissue samples; all five being increased (ZnT-6, Zip-1, Zip-3A, Zip-10, and Zip-14). The response of the 19 transporters was also determined when the cell lines were exposed to 75 μM Zn+2 for 24 h. It was shown for the RWPE-1 cells that only 5 transporters responded to Zn+2 with mRNA for ZnT-1 and ZnT-2 being increased while mRNA for ZnT-7, Zip-7 and Zip-10 transporters were decreased. It was shown for the LNCaP, DU-145 and PC-3 cells that Zn+2 had no effect on the mRNA levels of all 19 transporters except for an induction of ZnT-1 in PC-3 cells. Overall, the study suggests that the RWPE-1 cells could be a valuable model for the study of the zinc transporter gene family in the prostate.
Keywords: Prostate; Zinc; Cancer; RWPE-1

Spectroscopic and electrochemical characterization of cytochrome c encapsulated in a bio sol–gel matrix by Daniela Deriu; Sara Emanuela Pagnotta; Roberto Santucci; Nicola Rosato (417-423).
Sol–gel technique represents a remarkably versatile method for protein encapsulation. To enhance sol–gel biocompatibility, systems envisaging the presence of calcium and phosphates in the sol–gel composition were recently prepared and investigated. Unfortunately, the low pH at which solutions were prepared (pH < 2.5) dramatically limited their application to proteins, because the acidic environment induces protein denaturation. In this paper we apply a new protocol based on the introduction of calcium nitrate to the inorganic phase, with formation of a binary bioactive system. In this case protein encapsulation results versatile and secure, being achieved at a pH close to neutrality (pH 6.0); also, the presence of calcium is expected to enhance system biocompatibility. To determine the properties of the salt-doped sol–gel and the influence exerted on entrapped biosystems, the structural and functional properties of embedded cytochrome c have been investigated. Data obtained indicate that the salt-doped sol–gel induces no significant change in the structure and the redox properties of the embedded protein; also, the matrix increases protein stability. Interestingly, the presence of calcium nitrate appears determinant for refolding of the acid-denatured protein. This is of interest in the perspective of future applications in biosensoristic area.
Keywords: Bio sol–gel; Protein encapsulation; Cytochrome c ; Cyclic voltammetry

The catalase mimetic complex Mn(III)-salen chloride (EUK8) was found to be pro-oxidant under low hydrogen peroxide concentrations. The increase in the fluorescence rate of the probe 1,2,3-dihydrorhodamine (DHR) in solution, as well as the carbonyl content of human serum albumin were found to be maximum at H2O2:EUK8 molar ratios ranging from 0 to 2, supporting previous findings regarding the mechanism of EUK8 catalase activity and the formation of highly oxidative Mn(V)-O2− species. This pro-oxidant effect is precluded by the presence of glutathione. Cytotoxicity to HeLa cells, as probed by increased rate of oxidation of intracellular DHR, was not observed. Our findings suggest that the combination of H2O2 and EUK8 at specific molar ratios, in the absence of reductants/antioxidants, induces the oxidation of organic molecules. It is shown that the fluorimetric determination of pro-oxidant activity of metal complexes is more sensitive than the colorimetric quantification of protein carbonyl content. The implications of our findings with respect to the somewhat confusing results arising from in vivo studies of EUK8 and other Mn(III) anti-oxidant metal complexes are discussed.
Keywords: Manganese; EUK8; Dihydrorhodamine; Peroxide; Antioxidant

Heme oxygenase and catalase gene expression in nodules and roots of soybean plants subjected to cadmium stress by Karina B. Balestrasse; Gustavo G. Yannarelli; Guillermo O. Noriega; Alcira Batlle; Maria L. Tomaro (433-441).
Heme oxygenase (HO, EC catalyses the oxidative conversion of heme to biliverdin IXα (BV) with the concomitant released of carbon monoxide and iron. Recently, plant HOs have been involved in the defence mechanism against oxidative stress. The goal of this study was to evaluate the time-course of HO-1 and catalase (CAT, EC gene expressions in nodules and roots of soybean plants subjected to Cd treatment. No significant changes were observed up to 24 h. After 48 h of 200 μM Cd exposure, an up-regulation of HO-1 mRNA (110%) occurred in nodules. On the other hand, a down-regulation was found in roots (39%). While there was an augmentation in CAT transcript levels (30%) in nodules, an important diminution (52%) was evidenced in roots. Changes observed in gene expression were also found in protein levels and activities. These data suggest that an induction of CAT and HO-1 occurred in nodules as a response of cell protection against oxidative damage. However, after 72 h treatment, a down-regulation of HO-1 mRNA was found either in nodules or in roots (78% and 94%, respectively), while a similar response was evidenced for CAT (40% and 83%, respectively). These results are consistent with our previous findings suggesting that oxidative stress produced by Cd were more pronounced in roots than in nodules of soybean plants. Moreover, this behaviour could explain the major viability observed in nodules respect to roots, and provide a new insight into the processes involved in the antioxidant defence system in plant tissues.
Keywords: Cadmium stress; Catalase; Heme oxygenase; Soybean

Lead (Pb) is a major chemical pollutant in the environment. The present investigation evaluates the possible use of Meat and Bone Meal Combustion Residues (MBMCR), to sequester Pb from the soil compartment using the heterozygous tobacco model (Nicotiana tabacum var. xanthi Dulieu) characterized by the a 1 + /a 1 a 2 + /a 2 system. The toxic potential of Pb-contaminations (50, 100, 1,000, 2,000 and 10,000 mg Pb kg−1) as Pb(NO3) in standard soil was investigated in lab conditions according to three endpoints: (i) acute toxicity of plants (mortality, height and surface area parameters), (ii) Pb-accumulation in roots, stems and leaves, and (iii) genetic effects as the expression of reversion in the leaf of plants. Moreover, chemical investigations of Pb interactions with soil were realized to complete the toxicity evaluation. The results demonstrated that: (i) MBMCR were not acutely toxic or genotoxic to tobacco plants, (ii) Pb is acutely toxic to tobacco plants at 10,000 mg Pb kg−1 of soil, (ii) but is not genotoxic, and (iii) Pb-bioaccumulation is significant in leaves, stems and roots (from 1,000, 2,000, and 50 mg Pb kg−1 of soil, respectively). In contrast, in the presence of MBMCR, the toxic impacts of Pb were inhibited and Pb-accumulation in tobacco plants was reduced. In complement, chemical analyses highlighted the high capacity of the standard soil to immobilize Pb. The results suggest that even if Pb is bioavailable from soils to plants, complex mechanisms could occur in plants protecting them from the toxic impact of Pb.
Keywords: Lead; Meat and bone meal combustion residues; Nicotiana tabacum var. xanthi Dulieu; Genetic impact; Phytotoxicity

Characterization of the recombinant Rieske [2Fe–2S] proteins HcaC and YeaW from E. coli by S. Boxhammer; S. Glaser; A. Kühl; A. K. Wagner; Christian L. Schmidt (459-467).
Three genes within the genome of E. coli K12 are predicted to encode proteins containing the typical Rieske iron–sulfur cluster-binding motifs. Two of these, hcaC and yeaW, were overexpressed in E. coli BL21 and Tuner (DE3) pLacI. The recombinant proteins were purified and analyzed by UV/Vis- and EPR-spectroscopy. HcaC and YeaW display the typical redox-dependent UV/Vis-spectra of iron–sulfur proteins. The EPR spectrum of reduced HcaC shows characteristic g-values of a Rieske cluster whereas the g-values for YeaW are close to the upper limit for this type of iron–sulfur cluster. Both iron–sulfur clusters could be reduced by dithionite, but not by ascorbate, confirming their classification as low-potential Rieske proteins as derived from the amino acid sequences. A phylogenetic analysis of the two proteins reveals that HcaC clearly segregates with the Rieske ferredoxins of class IIB oxygenases whereas the classification of YeaW remains doubtful.
Keywords: E. coli ; Low-potential Rieske iron–sulfur protein; Phenylpropionic acids; Phylogenetic analysis

Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review by Marc Port; Jean-Marc Idée; Christelle Medina; Caroline Robic; Monique Sabatou; Claire Corot (469-490).
Gadolinium-based contrast agents are widely used to enhance image contrast in magnetic resonance imaging (MRI) procedures. Over recent years, there has been a renewed interest in the physicochemical properties of gadolinium chelates used as contrast agents for MRI procedures, as it has been suggested that dechelation of these molecules could be involved in the mechanism of a recently described disease, namely nephrogenic systemic fibrosis (NSF). The aim of this paper is to discuss the structure-physicochemical properties relationships of marketed gadolinium chelates in regards to their biological consequences. Marketed gadolinium chelates can be classified according to key molecular design parameters: (a) nature of the chelating moiety: macrocyclic molecules in which Gd3+ is caged in the pre-organized cavity of the ligand, or linear open-chain molecules, (b) ionicity: the ionicity of the complex varies from neutral to tri-anionic agents, and (c) the presence or absence of an aromatic lipophilic residue responsible for protein binding. All these molecular characteristics have a profound impact on the physicochemical characteristics of the pharmaceutical solution such as osmolality, viscosity but also on their efficiency in relaxing water protons (relaxivity) and their biodistribution. These key molecular parameters can also explain why gadolinium chelates differ in terms of their thermodynamic stability constants and kinetic stability, as demonstrated by numerous in vitro and in vivo studies, resulting in various formulations of pharmaceutical solutions of marketed contrast agents. The concept of kinetic and thermodynamic stability is critically discussed as it remains a somewhat controversial topic, especially in predicting the amount of free gadolinium which may result from dechelation of chelates in physiological or pathological situations. A high kinetic stability provided by the macrocyclic structure combined with a high thermodynamic stability (reinforced by ionicity for macrocyclic chelates) will minimize the amount of free gadolinium released in tissue parenchymas.
Keywords: Magnetic resonance imaging; Contrast agents; Gadolinium; Osmolality; Viscosity; Relaxivity; Thermodynamic stability; Kinetic stability; Nephrogenic systemic fibrosis

Complexes of the type [M(apash)Cl] and [M(Hapash)(H2O)SO4], where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hapash = acetone p-amino acetophenone salicyloyl hydrazone have been synthesized and characterized by elemental analyses, molar conductance, magnetic moments, electronic, ESR and IR spectra, thermal studies (TGA & DTA) and X-ray diffraction studies. The ligand coordinates through two >C=N and a deprotonated enolate group in all the chloro complexes, whereas through two >C=N– and a >C=O group in all the sulfato complexes. The electronic spectra suggest a square planar geometry for Co(II), Ni(II) and Cu(II) chloride complexes and an octahedral geometry for the sulfate complexes. ESR data show an isotropic symmetry for [Cu(apash)Cl] and [Cu(Hapash)(H2O)SO4] in solid state. However, ESR spectra of both Cu(II) complexes indicate the presence of unpaired electron in $$ { ext{d}}_{{{ ext{x}}^{2} - { ext{y}}^{2} }}. $$ The X-ray diffraction parameters for [Co(apash)Cl] and [Cu(Hapash)(H2O)SO4] complexes correspond to a tetragonal and an orthorhombic crystal lattices, respectively. Thermal studies of [Co(apash)Cl] complex shows a multi-step decomposition pattern. Most of the complexes show better antifungal activity than the standard miconazole against a number of pathogenic fungi. The antibacterial activity of these complexes has been evaluated against E. coli and Clostridium sp. which shows a moderate activity.
Keywords: Metal(II) complexes; Synthesis and characterization; Salicyloyl hydrazone; Antifungal; Antibacterial activity