Applied Composite Materials (v.22, #2)

In order to improve the testing and design of filament wound composite structures a model to predict the accumulation of fibre breakages has been developed that takes into account all physical phenomena controlling fibre failure, including the stochastic nature of fibre strength, stress transfer between fibres due to the shear of the matrix, interfacial debonding and viscosity of the matrix. In this, the first of three papers, the damage processes leading up to failure are discussed and quantified in terms of fibre breaks for the case of elastic monotonically tensile loading. It is clearly shown that the failure of a unidirectional composite structure results from the formation of random fibre breaks which at high loads coalesce into clusters of broken fibres. A critical damage state is found.
Keywords: Fibres; Laminates; Micro-mechanics; Numerical analysis

The purpose of these three papers is not to just revisit the modelling of unidirectional composites. It is to provide a robust framework based on physical processes that can be used to optimise the design and long term reliability of internally pressurised filament wound structures. The model presented in Part 1 for the case of monotonically loaded unidirectional composites is further developed to consider the effects of the viscoelastic nature of the matrix in determining the kinetics of fibre breaks under slow or sustained loading. It is shown that the relaxation of the matrix around fibre breaks leads to locally increasing loads on neighbouring fibres and in some cases their delayed failure. Although ultimate failure is similar to the elastic case in that clusters of fibre breaks ultimately control composite failure the kinetics of their development varies significantly from the elastic case. Failure loads have been shown to reduce when loading rates are lowered.
Keywords: Fibres; Laminates; Micro-mechanics; Numerical analysis

The purpose of these three papers is not to just revisit the modelling of unidirectional composites. It is to provide a robust framework based on physical processes that can be used to optimise the design and long term reliability of internally pressurised filament wound structures. The results given in paper Parts 1 and 2 concerning the behaviour of unidirectional composites, such as carbon fibre reinforced epoxy resin, are, here, extended to the behaviour of cross-plied composites consisting of unidirectional plies orientated at different angles with respect to the loading direction. In these laminates the plies orientated parallel to the loading direction (at 0) control the ultimate failure of the composite. This paper shows that the development of fibre breaks in analogous to that seen in the studies described in Part 1 and 2. Clustering of fibre breaks, shown by the development of 32-plets, preceedes failure just before specimen loaded monotonically break but develop in a more stable manner when subjected to steady high level loads. The effect of separating the 0 plies into thinner layers impedes the development of fibre breaks clusters and increases ultimate lifetimes.
Keywords: Fibres; Laminates; Micro-mechanics; Numerical analysis

The present paper focuses on composite structures which consist of several layers of carbon fiber reinforced plastics (CFRP). For such layered composite structures, delamination constitutes one of the major failure modes. Predicting its initiation is essential for the design of these composites. Evaluating stress-strength relation based onset criteria requires an accurate representation of the through-the-thickness stress distribution, which can be particularly delicate in the case of shell-like structures. Thus, in this paper, a solid-shell finite element formulation is utilized which allows to incorporate a fully three-dimensional material model while still being suitable for applications involving thin structures. Moreover, locking phenomena are cured by using both the EAS and the ANS concept, and numerical efficiency is ensured through reduced integration. The proposed anisotropic material model accounts for the material’s micro-structure by using the concept of structural tensors. It is validated by comparison to experimental data as well as by application to numerical examples.
Keywords: Fiber-reinforced composite; Layered composite; Delamination; Solid-shell concept; Enhanced strain formulation; Reduced integration

A comprehensive simulation procedure combining electrical-thermal analysis and BLOW-OFF impulse (BOI) analysis was conducted to investigate lightning direct effects on damage behavior of composite. The nonlinear material model was elaborated combining the damage mechanism of composite laminate subjected to lightning strike. Results of electrical-thermal analysis indicated that temperature distribution of composite laminate is mainly affected by the electrical anisotropy because of Joule heating. By comparing results of BOI analysis with lightning test, it can be found that strain fields of analysis meet well with the damage pattern of lightning specimen. It could be concluded that the analysis procedure is suitable for modeling damage of composite due to lighting strike, and results of logarithmic strain field can be used to help estimate the zone which need to be repaired for composite.
Keywords: Composite laminate; Lightning direct effect; Nonlinear constitutive model; Numerical simulation

Compression resin transfer molding (CRTM) is an effective process for the manufacturing of composite parts with large size and high fiber content, while the existence of open gap, the dynamically changing dimensions of cavity geometry and the deformation of preform during filling process bring great difficulties to the three-dimensional simulation of resin flow in CRTM. In order to develop a convenient and efficient three-dimensional simulation approach for CRTM filling process, a unified mathematical model for resin flow in both open gap and preform is established instead of considering the gap as high permeability preform, then the analysis of the clamping force and stress distribution are presented. In order to avoid direct solving the coupled equations of resin flow and cavity deformation, volume of fluid (VOF) multiphase flow technology and dynamic mesh model are applied to track the resin flow front and update the cavity geometry during filling simulation, respectively. The master–slave element method is used to modify the amount of resin release and ensure the resin mass conservation. The validity of the numerical approach is verified by comparison with analytical and experimental results, three-dimensional simulation examples are also presented.
Keywords: Compression resin transfer molding; Resin flow; Stress analysis; Preform deformation; Numerical simulation