Applied Composite Materials (v.17, #4)

Study of Composite Interface Fracture and Crack Growth Monitoring Using Carbon Nanotubes by Mollie A. Bily; Young W. Kwon; Randall D. Pollak (347-362).
Interface fracture of woven fabric composite layers was studied using Mode II fracture testing. Both carbon fiber and E-glass fiber composites were used with a vinyl ester resin. First, the single-step cured (i.e., co-cured) composite interface strength was compared to that of the two-step cured interface as used in the scarf joint technique. The results showed that the two-step cured interface was as strong as the co-cured interface. Carbon nanotubes were then applied to the composite interface using two-step curing, and then followed by Mode II fracture testing. The results indicated a significant improvement of the interface fracture toughness due to the dispersed carbon nanotube layer for both carbon fiber and E-glass fiber composites. The carbon nanotube layer was then evaluated as a means to monitor crack growth along the interface. Because carbon nanotubes have very high electrical conductivity, the electrical resistance was measured through the interface as a crack grew, thus disrupting the carbon nanotube network and increasing the resistance. The results showed a linear relationship between crack length and interface resistance for the carbon fiber composites, and allowed initial detection of failure in the E-glass fiber composites. This study demonstrated that the application of carbon nanotubes along a critical composite interface not only improves fracture properties but can also be used to detect and monitor interfacial damage.
Keywords: Composites interface; Fracture strength; Carbon nanotubes; Crack monitoring

Natural Weathering and Sea Water Effects on the Durability of Glass Fiber Reinforced Vinylester: Fractographic Analysis by Nesar Merah; Seyed Nizamuddin; Zafarullah Khan; Faleh Al-Sulaiman; Moeid Mehdi (363-372).
This paper presents a study of the effects of harsh outdoor weather and warm sea water on the tensile behavior of Glass-Fiber Reinforced Vinylester (GFRV) pipe materials destined for sea water handling and transportation. The effect of Dhahran’s outdoor weather for exposure periods ranging from 3 to 36 months revealed an improvement in tensile strength when compared with the as received GFRV sample. A significant increasing trend of tensile strength from 3 to 12 months was noted. This is attributed mainly to the post curing effects resulting in higher cross linking density. After 12 months of exposure the tensile strength showed a decreasing trend, but remaining still higher than the average tensile strength of as received (baseline) GFRV sample. Similar results of enhanced tensile strength were noted after immersion of GFRV pipes in warm Gulf sea water for 12 months. Fractographic analysis was performed on the tensile tested GFRV samples using optical microscope followed by scanning electron microscope (SEM). The characterization of the controlling failure mechanisms involved from fracture initiation to fracture propagation through the gage section of the specimen were predicted and were justified by correlating the optical and SEM pictures.
Keywords: Durability; Environment; Curing; Tensile; GFRV

Based on the microstructure of three-dimensional (3D) four-directional rectangular braided composites, a new parameterized 3D finite element model (FEM) is established. This model precisely simulates the spatial configuration of the braiding yarns and considers the cross-section deformation as well as the surface contact due to the mutual squeezing in the braiding process. Moreover, it is oriented in the same reference frame as the composites, which coincides with the actual configuration of 3D braided composites and facilitates the analysis of mechanical properties. In addition, the model investigates the relationships among the structural parameters, particularly the braiding angle and the interior braiding angle, which were not taken into account in the previous models. Based on the parameterized FEM, the structural geometry of the composites is analyzed and some conclusions are drawn herein. Good agreement has been obtained between the calculated and measured values of the geometric characteristics of braided composite samples.
Keywords: Textile composites; Finite element model; Microstructure; Geometric characteristics; Mechanical properties

In the first part of the work, we have established a new parameterized three-dimensional (3D) finite element model (FEM) which precisely simulated the spatial configuration of the braiding yarns and considered the cross-section deformation as well as the surface contact relationship between the yarns. This paper presents a prediction of the effective elastic properties and the meso-scale mechanical response of 3D braided composites to verify the validation of the FEM. The effects of the braiding parameters on the mechanical properties are investigated in detail. By analyzing the deformation and stress nephogram of the model, a reasonable overall stress field is provided and the results well support the strength prediction. The results indicate it is convenient to predict all the elastic constants of 3D braided composites with different parameters simultaneously using the FEM. Moreover, the FEM can successfully predict the meso-scale mechanical response of 3D braided composites containing periodical structures.
Keywords: Textile composites; Mechanical properties; Finite Element Analysis (FEA); Braiding; Stress distribution

Finite Element Dynamic Analysis of Laminated Viscoelastic Structures by Naser Al-Huniti; Fadi Al-Faqs; Osama Abu Zaid (405-414).
This work is concerned with the dynamic behavior of laminated beam, plate and shell structures consisting of a viscoelastic damping layer constrained between two structural layers. Finite element models for modal, harmonic and transient analyses are developed. The dynamic interlaminar shear stresses are determined and presented under harmonic and transient loads. The effect of the damping ratio of the viscoelastic material is investigated. It is found that the viscoelastic material damping reduces the interlaminar stresses. The results also show the dependency of the viscoelastic material on frequency, hence, the effect of the viscoelastic material appears significantly under harmonic loading. In transient analysis, the importance of the viscoelastic material is observed in absorbing the impact and returning the structure to its original configuration.
Keywords: Finite element; Viscoelastic; Laminated beam; Plate and shell; Dynamic interlaminar stresses