Current Neuropharmacology (v.15, #2)

Meet Our Editorial Board Member by Guy A. Caldwell (195-195).

The Proteomics of Intrathecal Analgesic agents for Chronic Pain by David M. Moore, Connail McCrory (198-205).
Chronic pain remains a challenging clinical problem with a growing socio-economic burden for the state. Its prevalence is high and many of the patients are of work age. Our knowledge regarding the pathophysiology of chronic pain is poor. The consensus view is that the central nervous system plays a key role in the persistence of pain after an initiating event has long ceased. However the specifics of this biological response to an initiating event remains unclear. There is a growing body of evidence to support the concept that a central neuroimmune response is initiated and a number of small peptides have been implicated in this process following cerebrospinal fluid analysis in patients with chronic pain. This central biosynthetic peptide response leads to a process called central sensitization. Therapy is aimed at modulating and even inhibiting this response. However current pharmacological therapeutic options are limited in efficacy with significant deleterious side effect profiles. Proteomic studies extend single molecule analysis by identifying the components of biological networks and pathways and defining their interactions. This tool offers the potential to provide a molecular overview of the biological processes involved in chronic pain. It will also facilitate examination of gene-drug interactions. This technique offers a mechanism of defining the central biological responses that result in chronic pain and this information may facilitate the development of better therapies.

The Pharmacology of Spinal Opioids and Ziconotide for the Treatment of Non-Cancer Pain by J. E. Pope, T. R. Deer, K. Amirdelfan, W. P. McRoberts, N. Azeem (206-216).
Background: Intrathecal drug delivery has undergone a revitalization following a better understanding of this delivery route and its pharmacokinetics. Driven by patient safety and outcomes, clinicians are motivated to rethink the traditional spinal infusion pump patient selection criteria and indications. We review the current understanding of the pharmacology of commonly employed intrathecal agents and the clinical relevance.

Methods: Search strategies for data acquisition included Medline database, PubMed, Google scholar, along with international and national professional meeting content, with key words including pharmacology of opioids, intrathecal therapy, ziconotide, pharmacokinetics, and intrathecal drug delivery. The search results were limited to the English language.

Results: Over 300 papers were identified. The literature was condensed and digested to evaluate the most commonly used medications in practice, sto serve as a foundation for review. We review on-label medications: ziconotide and morphine, and off label medications including fentanyl, sufentail, and hydromorphine.

Conclusion: Intrathecal therapy has level-one evidence for use for malignant pain and nonmalignant pain, with continued cost savings and improved safety. To most effectively serve our patients, a clear appreciation for the pharmacology of these commonly employed medication is paramount.

Ziconotide Monotherapy: A Systematic Review of Randomised Controlled Trials by Morag E. Brookes, Sam Eldabe, Alan Batterham (217-231).
Introduction: Chronic neuropathic pain is difficult to treat and is often refractory to most modalities of treatment. Ziconotide is a novel, potent, non-opioid, calcium channel blocking agent which has been shown in clinical trials to be effective in treating chronic neuropathic pain.

Methods: EMBASE, MEDLINE, CINAHL Plus and Web of Science electronic databases were searched for English language studies. Reference sections of articles were examined for further papers and the manufacturer of ziconotide was contacted for further unpublished data. Three randomised controlled trials in ziconotide monotherapy were included and subjected to a random effects meta-analysis.

Results: All three studies used the similar main outcome measure (visual analogue scale of pain intensity; VASPI) and were therefore comparable. A Jadad score was performed for each paper. Frequent serious adverse events (SAEs) were observed which resulted in two of the studies revising the protocol. The metaanalysis revealed a pooled odds ratio (responders on ziconotide vs. placebo) of 2.77 (95% CI, 1.37 to 5.59).

Discussion: The results suggest that ziconotide is beneficial for pain reduction in chronic neuropathic pain. However, there remain some methodological issues that may call into question the validity of the results. It is evident that more work needs to be conducted to further validate the efficacy of ziconotide and to discover new areas of use.

Current and Future Issues in the Development of Spinal Agents for the Management of Pain by Tony L. Yaksh, Casey J. Fisher, Tyler M. Hockman, Ashley J. Wiese (232-259).
Targeting analgesic drugs for spinal delivery reflects the fact that while the conscious experience of pain is mediated supraspinally, input initiated by high intensity stimuli, tissue injury and/or nerve injury is encoded at the level of the spinal dorsal horn and this output informs the brain as to the peripheral environment. This encoding process is subject to strong upregulation resulting in hyperesthetic states and downregulation reducing the ongoing processing of nociceptive stimuli reversing the hyperesthesia and pain processing. The present review addresses the biology of spinal nociceptive processing as relevant to the effects of intrathecally-delivered drugs in altering pain processing following acute stimulation, tissue inflammation/injury and nerve injury. The review covers i) the major classes of spinal agents currently employed as intrathecal analgesics (opioid agonists, alpha 2 agonists; sodium channel blockers; calcium channel blockers; NMDA blockers; GABA A/B agonists; COX inhibitors; ii) ongoing developments in the pharmacology of spinal therapeutics focusing on less studied agents/targets (cholinesterase inhibition; Adenosine agonists; iii) novel intrathecal targeting methodologies including gene-based approaches (viral vectors, plasmids, interfering RNAs); antisense, and toxins (botulinum toxins; resniferatoxin, substance P Saporin); and iv) issues relevant to intrathecal drug delivery (neuraxial drug distribution), infusate delivery profile, drug dosing, formulation and principals involved in the preclinical evaluation of intrathecal drug safety.

MicroRNAs in Neurocognitive Dysfunctions: New Molecular Targets for Pharmacological Treatments? by Wissem Deraredj Nadim, Viorel Simion, Helene Benedetti, Chantal Pichon, Patrick Baril, Severine Morisset-Lopez (260-275).
Background: Neurodegenerative and cognitive disorders are multifactorial diseases (i.e., involving neurodevelopmental, genetic, age or environmental factors) characterized by an abnormal development that affects neuronal function and integrity. Recently, an increasing number of studies revealed that the dysregulation of microRNAs (miRNAs) may be involved in the etiology of cognitive disorders as Alzheimer, Parkinson, and Huntington's diseases, Schizophrenia and Autism spectrum disorders.

Methods: From an extensive search in bibliographic databases of peer-reviewed research literature, we identified relevant published studies related to specific key words such as memory, cognition, neurodegenerative disorders, neurogenesis and miRNA. We then analysed, evaluated and summerized scientific evidences derived from these studies.

Results: We first briefly summarize the basic molecular events involved in memory, a process inherent to cognitive disease, and then describe the role of miRNAs in neurodevelopment, synaptic plasticity and memory. Secondly, we provide an overview of the impact of miRNA dysregulation in the pathogenesis of different neurocognitive disorders, and lastly discuss the feasibility of miRNA-based therapeutics in the treatment of these disorders.

Conclusion: This review highlights the molecular basis of neurodegenerative and cognitive disorders by focusing on the impact of miRNAs dysregulation in these pathological phenotypes. Altogether, the published reports suggest that miRNAs-based therapy could be a viable therapeutic alternative to current treatment options in the future.

Pharmacomodulation of microRNA Expression in Neurocognitive Diseases: Obstacles and Future Opportunities by Viorel Simion, Wissem Deraredj Nadim, Helene Benedetti, Chantal Pichon, Severine Morisset-Lopez, Patrick Baril (276-290).
Given the importance of microRNAs (miRNAs) in modulating brain functions and their implications in neurocognitive disorders there are currently significant efforts devoted in the field of miRNA-based therapeutics to correct and/or to treat these brain diseases. The observation that miRNA 29a/b-1 cluster, miRNA 10b and miRNA 7, for instance, are frequently deregulated in the brains of patients with neurocognitive diseases and in animal models of Alzheimer, Huntington's and Parkinson's diseases, suggest that correction of miRNA expression using agonist or antagonist miRNA oligonucleotides might be a promising approach to correct or even to cure such diseases. The encouraging results from recent clinical trials allow envisioning that pharmacological approaches based on miRNAs might, in a near future, reach the requirements for successful therapeutic outcomes and will improve the healthcare of patients with brain injuries or disorders. This review will focus on the current strategies used to modulate pharmacological function of miRNA using chemically modified oligonucleotides. We will then review the recent literature on strategies to improve nucleic acid delivery across the blood-brain barrier which remains a severe obstacle to the widespread application of miRNA therapeutics to treat brain diseases. Finally, we provide a state-of-art of current preclinical research performed in animal models for the treatment of neurocognitive disorders using miRNA as therapeutic agents and discuss future developments of miRNA therapeutics.

Evidences for the Anti-panic Actions of Cannabidiol by Vanessa P. Soares, Alline C. Campos (291-299).
Background: Panic disorder (PD) is a disabling psychiatry condition that affects approximately 5% of the worldwide population. Currently, long-term selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for PD; however, the common side-effect profiles and drug interactions may provoke patients to abandon the treatment, leading to PD symptoms relapse. Cannabidiol (CBD) is the major non-psychotomimetic constituent of the Cannabis sativa plant with antianxiety properties that has been suggested as an alternative for treating anxiety disorders. The aim of the present review was to discuss the effects and mechanisms involved in the putative anti-panic effects of CBD.

Methods: electronic database was used as source of the studies selected selected based on the studies found by crossing the following keywords: cannabidiol and panic disorder; canabidiol and anxiety, cannabidiol and 5-HT1A receptor).

Results: In the present review, we included both experimental laboratory animal and human studies that have investigated the putative anti-panic properties of CBD. Taken together, the studies assessed clearly suggest an anxiolytic-like effect of CBD in both animal models and healthy volunteers.

Conclusions: CBD seems to be a promising drug for the treatment of PD. However, novel clinical trials involving patients with the PD diagnosis are clearly needed to clarify the specific mechanism of action of CBD and the safe and ideal therapeutic doses of this compound.

Background: The prevalence of methamphetamine (MA) use has increased in recent years. In order to assess how this drug produces its effects, both clinical and preclinical studies have recently begun to focus on oxidative stress as an important biochemical mechanism in mediating these effects.

Objective: The purpose of this review is to illustrate the variation in the design of preclinical studies investigating MA exposure on oxidative stress parameters in animal models.

Method: The experimental variables investigated and summarised include MA drug treatment, measurements of oxidative stress and antioxidant treatments that ameliorate the harmful effects of MA.

Results: These preclinical studies differ greatly in their experimental design with respect to the dose of MA (ranging between 0.25 and 20 mg/kg), the dosing regime (acute, binge or chronic), the time of measurement of oxidative stress (0.5 h to 2 wks after last MA administration), the antioxidant system targeted and finally the use of antioxidants including the route of administration (i.p. or p.o.), the frequency of exposure and the time of exposure (preventative or therapeutic).

Conclusion: The findings in this paper suggest that there is a large diversity among these studies and so the interpretation of these results is challenging. For this reason, the development of guidelines and how best to assess oxidative stress in animal models may be beneficial. The use of these simple recommendations mean that results will be more comparable between laboratories and that future results generated will give us a greater understanding of the contribution of this important biochemical mechanism and its implications for the clinical scenario.

Psychotic Symptoms Associated with the use of Dopaminergic Drugs, in Patients with Cocaine Dependence or Abuse by Carlos Roncero, Alfonso C. Abad, Antonio Padilla-Mata, Elena Ros-Cucurull, Carmen Barral, Miquel Casas, Lara Grau-López (315-323).
Background: In the field of dual diagnosis, physicians are frequently presented with pharmacological questions. Questions about the risk of developing psychotic symptoms in cocaine users who need treatment with dopaminergic drugs could lead to an undertreatment.

Objective: Review the presence of psychotic symptoms in patients with cocaine abuse/dependence, in treatment with dopaminergic drugs.

Methods: Systematic PubMed searches were conducted including December 2014, using the keywords: “cocaine”, dopaminergic drug (“disulfuram-methylphenidate-bupropion-bromocriptine-sibutramineapomorphine- caffeine”) and (“psychosis-psychotic symptoms-delusional-paranoia”). Articles in English, Spanish, Portuguese, French, and Italian were included. Articles in which there was no history of cocaine abuse/dependence, absence of psychotic symptoms, systematic reviews, and animal studies, were excluded.

Results: 313 papers were reviewed. 7 articles fulfilled the inclusion-exclusion criteria. There is a clinical trial including 8 cocaine-dependent patients using disulfiram in which 3 of them presented psychotic symptoms and 6 case-reports: disulfuram (1), methylphenidate (1), disulfiram with methylphenidate (2), and bupropion (2), reporting psychotic symptoms, especially delusions of reference and persecutory ideation.

Conclusion: Few cases have been described, which suggests that the appearance of these symptoms is infrequent. The synergy of dopaminergic effects or the dopaminergic sensitization in chronic consumption are the explanatory theories proposed by the authors. In these cases, a relationship was found between taking these drugs and the appearance of psychotic symptoms. Given the low number of studies found, further research is required. The risk of psychotic symptoms seems to be acceptable if we compare it with the benefits for the patients but a closer monitoring seems to be advisable.

Molecular Hydrogen as a Neuroprotective Agent by Masumi Iketani, Ikuroh Ohsawa (324-331).
Oxidative stress and neuroinflammation cause many neurological disorders. Recently, it has been reported that molecular hydrogen (H2) functions as an antioxidant and anti-inflammatory agent. The routes of H2 administration in animal model and human clinical studies are roughly classified into three types, inhalation of H2 gas, drinking H2-dissolved water, and injection of H2-dissolved saline. This review discusses some of the remarkable progress that has been made in the research of H2 use for neurological disorders, such as cerebrovascular diseases, neurodegenerative disorders, and neonatal brain disorders. Although most neurological disorders are currently incurable, these studies suggest the clinical potential of H2 administration for their prevention, treatment, and mitigation. Several of the potential effectors of H2 will also be discussed, including cell signaling molecules and hormones that are responsible for preventing oxidative stress and inflammation. Nevertheless, further investigation will be required to determine the direct target molecule of H2.