Current Neuropharmacology (v.11, #1)

PREFACE by Tom Salt (1-1).

Editorial (Hot Topic: Advances in Dystonia) by Cristopher Bragg, Nutan Sharma (2-2).

Focal dystonias are dystonias that affect one part of the body, and are sometimes task-specific. Brain imaging and transcranial magnetic stimulation techniques have been valuable in defining the pathophysiology of dystonias in general, and are particularly amenable to studying focal dystonias. Over the past few years, several common themes have emerged in the imaging literature, and this review summarizes these findings and suggests some ways in which these distinct themes might all point to one common systems-level mechanism for dystonia. These themes include (1) the role of premotor regions in focal dystonia, (2) the role of the sensory system and sensorimotor integration in focal dystonia, (3) the role of decreased inhibition/increased excitation in focal dystonia, and (4) the role of brain imaging in evaluating and guiding treatment of focal dystonias. The data across these themes, together with the features of dystonia itself, are consistent with a hypothesis that all dystonias reflect excessive output of postural control/stabilization systems in the brain, and that the mechanisms for dystonia reflect amplification of an existing functional system, rather than recruitment of the wrong motor programs. Imaging is currently being used to test treatment effectiveness, and to visually guide treatment of dystonia, such as placement of deep brain stimulation electrodes. In the future, it is hoped that imaging may be used to individualize treatments across behavioral, pharmacologic, and surgical domains, thus optimizing both the speed and effectiveness of treatment for any given individual with focal dystonia.

Invertebrate Models of Dystonia by Kim A. Caldwell, Yilong Shu, Nathan B. Roberts, Guy A. Caldwell, Janis M. O'Donnell (16-29).
The neurological movement disorder dystonia is an umbrella term for a heterogeneous group of related conditions where at least 20 monogenic forms have been identified. Despite the substantial advances resulting from the identification of these loci, the function of many DYT gene products remains unclear. Comparative genomics using simple animal models to examine the evolutionarily conserved functional relationships with monogenic dystonias represents a rapid route toward a comprehensive understanding of these movement disorders. Current studies using the invertebrate animal models Caenorhabditis elegans and Drosophila melanogaster are uncovering cellular functions and mechanisms associated with mutant forms of the well-conserved gene products corresponding to DYT1, DYT5a, DYT5b, and DYT12 dystonias. Here we review recent findings from the invertebrate literature pertaining to molecular mechanisms of these gene products, torsinA, GTP cyclohydrolase I, tyrosine hydroxylase, and the alpha subunit of Na+/K ATPase, respectively. In each study, the application of powerful genetic tools developed over decades of intensive work with both of these invertebrate systems has led to mechanistic insights into these human disorders. These models are particularly amenable to large-scale genetic screens for modifiers or additional alleles, which are bolstering our understanding of the molecular functions associated with these gene products. Moreover, the use of invertebrate models for the evaluation of DYT genetic loci and their genetic interaction networks has predictive value and can provide a path forward for therapeutic intervention.

The majority of studies investigating the molecular pathogenesis and cell biology underlying dystonia have been performed in individuals with primary dystonia. This includes monogenic forms such as DYT1and DYT6 dystonia, and primary focal dystonia which is likely to be multifactorial in origin. In recent years there has been renewed interest in non-primary forms of dystonia including the dystonia-plus syndromes and heredodegenerative disorders. These are caused by a variety of genetic mutations and their study has contributed to our understanding of the neuronal dysfunction that leads to dystonia These findings have reinforced themes identified from study of primary dystonia including abnormal dopaminergic signalling, cellular trafficking and mitochondrial function. In this review we highlight recent advances in the understanding of the dystonia-plus syndromes and heredodegenerative dystonias.

Motor and Sensory Dysfunction in Musician's Dystonia by Florence C.F. Chang, Steven J. Frucht (41-47).
Musicians' dystonia is a task-specific and painless loss of motor control in a previously well-executed task. It is increasingly recognized in the medical and musical community. Recent advances in neuroimaging, transcranial magnetic stimulation and novel techniques in electroencephalography have shed light on its underlying pathophysiology. To date, a deranged cortical plasticity leading to abnormal sensorimotor integration, combined with reduced inhibition across several levels of the motor pathway are likely mechanisms.This paper reviews the various phenomenology of musician's dystonia across keyboard, string, brass, flute and drum players. Treatment is often challenging. Medical therapies like botulinum toxin injection and rehabilitation method with sensorimotor training offer symptomatic relief and return to baseline performance to some musicians.

Defining Dystonic Tremor by Rodger J. Elble (48-52).
A strong association between dystonia and tremor has been known for more than a century. Two forms of tremor in dystonia are currently recognized: 1) dystonic tremor, which is tremor produced by dystonic muscle contraction and 2) tremor associated with dystonia, which is tremor in a body part that is not dystonic, but there is dystonia elsewhere. Both forms of tremor in dystonia frequently resemble essential tremor or another pure tremor syndrome (e.g., isolated head and voice tremors and task-specific writing tremor), and relationships among these tremor disorders have long been debated. Misdiagnosis is common because mild dystonia is frequently overlooked in patients with tremor. It is now clear that essential tremor is a syndrome, not a specific disease, and the use of essential tremor as a specific clinical diagnosis is arguably an impediment to elucidating this and other pure tremor syndromes and their relationship to dystonia. A new classification, primary tremor, is proposed and would be used for any disorder in which tremor is the sole or principal abnormality with no identifiable etiology other than possible genetic inheritance. This classification scheme would facilitate tremor research by moving the focus from the narrow question “Is it essential tremor?” to a broader consideration of what genetic and environmental factors cause primary tremor disorders, and how do they relate to dystonia and other neurological disorders.

The focal dystonia benign essential blepharospasm (BEB) affects as many as 40,000 individuals in the United States. This dystonia is characterized by trigeminal hyperexcitability, photophobia, and most disabling of the symptoms, involuntary spasms of lid closure that can produce functional blindness. Like many focal dystonias, BEB appears to develop from the interaction between a predisposing condition and an environmental trigger. The primary treatment for blepharospasm is to weaken the eyelid-closing orbicularis oculi muscle to reduce lid spasms. There are several animal models of blepharospasm that recreate the spasms of lid closure in order to investigate pharmacological treatments to prevent spasms of lid closure. One animal model attempts to mimic the predisposing condition and environmental trigger that give rise to BEB. This model indicates that abnormal interactions among trigeminal blink circuits, basal ganglia, and the cerebellum are the neural basis for BEB.

Genetics and Pathophysiology of Neurodegeneration with Brain Iron Accumulation (NBIA) by Susanne A. Schneider, Petr Dusek, John Hardy, Ana Westenberger, Joseph Jankovic, Kailash P. Bhatia (59-79).
Our understanding of the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) continues to grow considerably. In addition to the core syndromes of pantothenate kinase-associated neurodegeneration (PKAN, NBIA1) and PLA2G6-associated neurodegeneration (PLAN, NBIA2), several other genetic causes have been identified (including FA2H, C19orf12, ATP13A2, CP and FTL). In parallel, the clinical and pathological spectrum has broadened and new age-dependent presentations are being described. There is also growing recognition of overlap between the different NBIA disorders and other diseases including spastic paraplegias, leukodystrophies and neuronal ceroid lipofuscinosis which makes a diagnosis solely based on clinical findings challenging. Autopsy examination of genetically-confirmed cases demonstrates Lewy bodies, neurofibrillary tangles, and other hallmarks of apparently distinct neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease. Until we disentangle the various NBIA genes and their related pathways and move towards pathogenesis-targeted therapies, the treatment remains symptomatic. Our aim here is to provide an overview of historical developments of research into iron metabolism and its relevance in neurodegenerative disorders. We then focus on clinical features and investigational findings in NBIA and summarize therapeutic results reviewing reports of iron chelation therapy and deep brain stimulation. We also discuss genetic and molecular underpinnings of the NBIA syndromes.

The Effects of Locus Coeruleus and Norepinephrine in Methamphetamine Toxicity by Michela Ferrucci, Filippo S. Giorgi, Alessia Bartalucci, Carla L. Busceti, Francesco Fornai (80-94).
The activity of locus coeruleus (LC) neurons has been extensively investigated in a variety of behavioural states. In fact this norepinephrine (NE)-containing nucleus modulates many physiological and pathological conditions including the sleep-waking cycle, movement disorders, mood alterations, convulsive seizures, and the effects of drugs such as psychostimulants and opioids. This review focuses on the modulation exerted by central NE pathways on the behavioural and neurotoxic effects produced by the psychostimulant methamphetamine, essentially the modulation of the activity of mesencephalic dopamine (DA) neurons. In fact, although NE in itself mediates some behavioural effects induced by methamphetamine, NE modulation of DA release is pivotal for methamphetamine-induced behavioural states and neurotoxicity. These interactions are discussed on the basis of the state of the art of the functional neuroanatomy of central NE- and DA systems. Emphasis is given to those brain sites possessing a remarkable overlapping of both neurotransmitters.

The multiplicity of peptidergic receptors and of the transduction pathways they activate offers the possibility of important advances in the development of specific drugs for clinical treatment of central nervous system disorders. Among them, retinal ischemia is a common clinical entity and, due to relatively ineffective treatment, remains a common cause of visual impairment and blindness. Ischemia is a primary cause of neuronal death, and it can be considered as a sort of final common pathway in retinal diseases leading to irreversible morphological damage and vision loss. Neuropeptides and their receptors are widely expressed in mammalian retinas, where they exert multifaceted functions both during development and in the mature animal. In particular, in recent years somatostatin and pituitary adenylate cyclase activating peptide have been reported to be highly protective against retinal cell death caused by ischemia, while data on opioid peptides, angiotensin II, and other peptides have also been published. This review provides a rationale for harnessing the peptidergic receptors as a potential target against retinal neuronal damages which occur during ischemic retinopathies.

Pharmacological Treatment of Mild Cognitive Impairment as a Prodromal Syndrome of Alzheimer's Disease by Tarik Karakaya, Fabian Fußer, Johannes Schroder, Johannes Pantel (102-108).
Mild cognitive impairment (MCI) is a syndrome which, depending on various neurobiological, psychological and social factors, carries a high risk of developing into dementia. As far as diagnostic uncertainty and the heterogeneous underlying pathophysiological mechanisms are concerned, only limited therapeutic options are currently available. Clinical trials involving a wide range of substances have failed to show efficacy on primary and secondary outcome parameters. Most results reflect not only a lack of effectiveness of drug therapy but also methodological constraints in true prodromal Alzheimer's disease (AD) based on clinical criteria. Biomarkers may help to identify MCI as a prodromal phase of dementia, so it is important to use them to improve specificity of case selection in future studies. For MCI as a prodromal syndrome of AD, clinical trials with disease modifying drugs that target underlying pathological mechanisms such as amyloid-beta accumulation and neurofibrillary tangle formation may help develop effective treatment options in the future. Alternative pharmacological approaches are currently being evaluated in ongoing phase 1 and phase 2 studies. Nevertheless, a lack of approved pharmacotherapeutic options has led to specific interventions that focus on patient education and life-style related factors receiving increasing attention.

The neurobiological etiopathogenesis of OCD is still obscure. Neuroimaging studies have been very influential in shaping neurobiological models of OCD. Investigations performed within last twenty years have revealed some important findings and proposed that specific cortico-striato-thalamic circuits are involved in the mediation of its symptoms. The effects of antiobsessional drugs and cognitive behavioral therapy on structural and functional imaging have been evaluated in limited size of investigations. In structural investigations, in summary, it was found key brain regions in the pathophysiology of OCD and amygdala to change volumetrically by treatment. In functional and neurochemical investigations, by using different treatment modalities, cortico-striatal function disablements and NAA changes in a variety of brain regions were reported. In this paper, these limited data are reviewed. It is clear that there is so many things to be performed in the future researches on the effects of therapy on brains of the patients with OCD.

Until recently, epilepsy medical therapy is usually limited to anti-epileptic drugs (AEDs). However, approximately 1/3 of epilepsy patients, described as drug-resistant epilepsy (DRE) patients, still suffer from continuous frequent seizures despite receiving adequate AEDs treatment of sufficient duration. More recently, with the remarkable progress of immunology, immunity and inflammation are considered to be key elements of the pathobiology of epilepsy. Activation of inflammatory processes in brain tissue has been observed in both experimental seizure animal models and epilepsy patients. Anti-inflammatory and immunotherapies also showed significant anticonvulsant properties both in clinical and in experimental settings. The above emerging evidence indicates that modulation of immunity and inflammatory processes could serve as novel specific targets to achieve potential anticonvulsant effects for the patients with epilepsy, especially DRE. Herein we review the recent evidence supporting the role of inflammation in the development and perpetuation of seizures, and also discuss the recent achievements in modulation of inflammation and immunotherapy applied to the treatment of epilepsy. Apart from medical therapy, we also discuss the influences of surgery, ketogenic diet, and electroconvulsive therapy on immunity and inflammation in DRE patients. Taken together, a promising perspective is suggested for future immunomodulatory therapies in the treatment of patients with DRE.