Current Neuropharmacology (v.10, #3)

Pharmacological Risk Factors for Delirium after Cardiac Surgery: A Review by Lurdes Tse, Stephan K.W. Schwarz, John B. Bowering, Randell L. Moore, Kyle D. Burns, Carole M. Richford, Jill A. Osborn, Alasdair M. Barr (181-196).
Purpose: The objective of this review is to evaluate the literature on medications associated with delirium after cardiac surgery and potential prophylactic agents for preventing it. Source: Articles were searched in MEDLINE, Cumulative Index to Nursing and Allied Health, and EMBASE with the MeSH headings: delirium, cardiac surgical procedures, and risk factors, and the keywords: delirium, cardiac surgery, risk factors, and drugs. Principle inclusion criteria include having patient samples receiving cardiac procedures on cardiopulmonary bypass, and using DSM-IV-TR criteria or a standardized tool for the diagnosis of delirium. Principal Findings: Fifteen studies were reviewed. Two single drugs (intraoperative fentanyl and ketamine), and two classes of drugs (preoperative antipsychotics and postoperative inotropes) were identified in the literature as being independently associated with delirium after cardiac surgery. Another seven classes of drugs (preoperative antihypertensives, anticholinergics, antidepressants, benzodiazepines, opioids, and statins, and postoperative opioids) and three single drugs (intraoperative diazepam, and postoperative dexmedetomidine and rivastigmine) have mixed findings. One drug (risperidone) has been shown to prevent delirium when taken immediately upon awakening from cardiac surgery. None of these findings was replicated in the studies reviewed. Conclusion: These studies have shown that drugs taken perioperatively by cardiac surgery patients need to be considered in delirium risk management strategies. While medications with direct neurological actions are clearly important, this review has shown that specific cardiovascular drugs may also require attention. Future studies that are methodologically consistent are required to further validate these findings and improve their utility.

In this paper is presented an overview of the technological barriers faced by the in vivo brain analysis with microelectrodes. Numerous microsensors and enzymatic microbiosensors have been developed for the real time monitoring of neurotransmitters, neuromodulators, drugs and diverse other biological relevant substances. A clear understanding of the working principle, advantages and limitations is essential for the acquisition of valid data in neurological investigations. Some of the aspects presented here refer to: microelectrode insertion and positioning related to possibilities to minimize tissue damage, spatial and temporal resolution of the measurements, actual controversies in data interpretation and sensor calibration, simultaneous detection of multiple analytes, interferences and state of the art in the development of wireless devices.

Rimonabant, Gastrointestinal Motility and Obesity by Yan Sun, Jiande D. Z. Chen (212-218).
Background: Obesity and overweight affect more than half of the US population and are associated with a number of diseases. Rimonabant, a cannabinoid receptor 1 blocker in the endocannabinoid (EC) system, was indicated in Europe for the treatment of obesity and overweight patients with associated risk factors but withdrawn on Jan, 2009 because of side effects. Many studies have reported the effects of rimonabant on gastrointestinal (GI) motility and food intake. The aims of this review are: (1) to review the relationship of EC system with GI motility and food intake; (2) to review the studies of rimonabant on GI motility, food intake and obesity; (3) and to report the tolerance and side effects of rimonabant. Methods: the literature (Pubmed database) was searched using keywords: rimonabant, obesity and GI motility. Results: GI motility is related with appetite, food intake and nutrients absorption. The EC system inhibits GI motility, reduces emesis and increases food intake; Rimonabant accelerates gastric emptying and intestinal transition but decreases energy metabolism and food intake. There is rapid onset of tolerance to the prokinetic effect of rimonabant. The main side effects of rimonabant are depression and GI symptoms. Conclusions: Rimonabant has significant effects on energy metabolism and food intake, probably mediated via its effects on GI motility.

Brain Connectivity Studies in Schizophrenia: Unravelling the Effects of Antipsychotics by Ayna B. Nejad, Bjorn H. Ebdrup, Birte Y. Glenthoj, Hartwig R. Siebner (219-230).
Impaired brain connectivity is a hallmark of schizophrenia brain dysfunction. However, the effect of drug treatment and challenges on the dysconnectivity of functional networks in schizophrenia is an understudied area. In this review, we provide an overview of functional magnetic resonance imaging studies examining dysconnectivity in schizophrenia and discuss the few studies which have also attempted to probe connectivity changes with antipsychotic drug treatment. We conclude with a discussion of possible avenues for further investigation.

Recently, δ opioid receptor agonists have been proposed to be attractive targets for the development of novel antidepressants. Several studies revealed that single treatment of δ opioid receptor agonists produce antidepressant-like effects in the forced swimming test, which is one of the most popular animal models for screening antidepressants. In addition, subchronic treatment with δ opioid receptor agonists has been shown to completely attenuate the hyperemotional responses found in olfactory bulbectomized rats. This animal model exhibits hyperemotional behavior that may mimic the anxiety, aggression, and irritability found in depressed patients, suggesting that δ opioid receptor agonists could be effective in the treatment of these symptoms in depression. On the other hand, prototype δ opioid receptor agonists produce convulsive effects, which limit their therapeutic potential and clinical development. In this review, we presented the current knowledge regarding the antidepressant-like effects of δ opioid receptor agonists, which include some recently developed drugs lacking convulsive effects.

The Wnt Pathway in Mood Disorders by Gabriele Sani, Flavia Napoletano, Alberto Maria Forte, Giorgio D. Kotzalidis, Isabella Panaccione, Giulio Maria Porfiri, Alessio Simonetti, Matteo Caloro, Nicoletta Girardi, Carla Ludovica Telesforo, Giulia Serra, Silvia Romano, Giovanni Manfredi, Valeria Savoja, Stefano Maria Tamorri, Alexia E. Koukopoulos, Daniele Serata, Chiara Rapinesi, Antonio Del Casale, Ferdinando Nicoletti, Paolo Girardi (239-253).
Objectives: To review the evidence of the involvement of the Wnt signalling pathway in mood disorders and in the action of drugs used to treat these disorders. Methods: We performed a careful PubMed search using as keywords all possible terms relevant to the Wnt pathway and crossing them with each of four areas, i.e., developmental effects, behavioural effects, mood disorders, and drugs used in their treatment. Papers were selected on the basis of their content and their data used for discussion. Results: Neurodevelopmental and behavioural data point to the possibility of involvement of the Wnt pathway in the pathophysiology of mood disorders. Clinical and post-mortem data are not sufficient to corroborate a definite role for Wnt alterations in any mood disorder. Combining genetic and pharmacological data, we may state that glycogen synthase kinase is the key molecule in bipolar disorder, as it is connected with many other signalling pathways that were shown to be involved in mood disorders, while Wnt molecules in the hippocampus appear to be mainly involved in depressive disorders. Conclusions: Altered Wnt signalling may play a role in the pathophysiology of mood disorders, although not a central one. It is premature to draw conclusions regarding the possible usefulness of Wnt manipulations in the treatment of mood disorders.

Post-stroke Movement Disorders: Clinical Manifestations and Pharmacological Management by Antonio Siniscalchi, Luca Gallelli, Angelo Labate, Giovanni Malferrari, Caterina Palleria, Giovambattista De Sarro (254-262).
Involuntary abnormal movements have been reported after ischaemic and haemorrhagic stroke. Post stroke movement disorders can appear as acute or delayed sequel. At the moment, for many of these disorders the knowledge of pharmacological treatment is still inadequate. Dopaminergic and GABAergic systems may be mainly involved in poststroke movement disorders. This article provides a review on drugs commonly used in post-stroke movement disorders, given that some post-stroke movement disorders have shown a partial benefit with pharmacological approach.

The Developing Utility of Zebrafish Models for Cognitive Enhancers Research by Adam Michael Stewart, Allan V. Kalueff (263-271).
Whereas cognitive impairment is a common symptom in multiple brain disorders, predictive and highthroughput animal models of cognition and behavior are becoming increasingly important in the field of translational neuroscience research. In particular, reliable models of the cognitive deficits characteristic of numerous neurobehavioral disorders such as Alzheimer's disease and schizophrenia have become a significant focus of investigation. While rodents have traditionally been used to study cognitive phenotypes, zebrafish (Danio rerio) are gaining popularity as an excellent model to complement current translational neuroscience research. Here we discuss recent advances in pharmacological and genetic approaches using zebrafish models to study cognitive impairments and to discover novel cognitive enhancers and neuroprotective mechanisms.

NMDA Neurotransmission Dysfunction in Behavioral and Psychological Symptoms of Alzheimer's Disease by Yu-Jhen Huang, Chieh-Hsin Lin, Hsien-Yuan Lane, Guochuan E. Tsai (272-285).
Dementia has become an all-important disease because the population is aging rapidly and the cost of health care associated with dementia is ever increasing. In addition to cognitive function impairment, associated behavioral and psychological symptoms of dementia (BPSD) worsen patient's quality of life and increase caregiver's burden. Alzheimer's disease is the most common type of dementia and both behavioral disturbance and cognitive impairment of Alzheimer's disease are thought to be associated with the N-methyl-D-aspartate (NMDA) dysfunction as increasing evidence of dysfunctional glutamatergic neurotransmission had been reported in behavioral changes and cognitive decline in Alzheimer's disease. We review the literature regarding dementia (especially Alzheimer's disease), BPSD and relevant findings on glutamatergic and NMDA neurotransmission, including the effects of memantine, a NMDA receptor antagonist, and NMDA-enhancing agents, such as D-serine and D-cycloserine. Literatures suggest that behavioral disturbance and cognitive impairment of Alzheimer's disease may be associated with excitatory neurotoxic effects which result in impairment of neuronal plasticity and degenerative processes. Memantine shows benefits in improving cognition, function, agitation/aggression and delusion in Alzheimer's disease. On the other hand, some NMDA modulators which enhance NMDA function through the co-agonist binding site can also improve cognitive function and psychotic symptoms. We propose that modulating NMDA neurotransmission is effective in treating behavioral and psychological symptoms of Alzheimer's disease. Prospective study using NMDA enhancers in patients with Alzheimer's disease and associated behavioral disturbance is needed to verify this hypothesis.