Current Drug Targets (v.16, #13)

Meet Our Editorial Board Member: by Manuel S. Yepes (1405-1405).

Supramolecular Nanomedicine - An Overview by Bhupinder Singh Sekhon (1407-1428).
Supramolecular chemistry enabling molecules and molecular complexes binding through non-covalent bonds allows nanomedicines to serve their desirable function to deliver drugs at the right time and the right place with minimal invasiveness. Supramolecular nanomedicine is the application of nanosupramolecules to the human health and disease and its main applications include diagnosis and therapy, drug and gene delivery, and tissue engineering. Nanoparticles with different structures obtained by assembling supraamphiphiles are promising candidates for multifunctional therapeutic platforms combining imaging and therapeutic capabilities. Encapsulation in supramolecular nanocarriers such as polymeric micelles, polymeric vesciles, layer-by-layer assembly, and porphysomes has the potential to deliver imaging and therapeutic drugs to the sites of action in the body. Hybrid supramolecular nanostructures of organic and inorganic molecules show promising potential in nanomedicine. Research is progressing towards rapid development on supramolecular nanotheranostic devices. Moreover, supramolecular nanoparticles exhibit low-toxicity, low-immunogenicity, nonpathogenicity, and in vivo degradability.

αIIbβ3-integrin Ligands: Abciximab and Eptifibatide as Proapoptotic Factors in MCF-7 Human Breast Cancer Cells by Joanna Kononczuk, Arkadiusz Surazynski, Urszula Czyzewska, Izabela Prokop, Michal Tomczyk, Jerzy Palka, Wojciech Miltyk (1429-1437).
Integrin receptors are considered to be the key factors in carcinogenesis. αIIbβ3-Integrin (GP IIb/IIIa) is the main glycoprotein of the surface of platelets, its presence has also been noted on the certain cancer cell lines. The molecular mechanism of its action in cancer cells remains unknown. This study presents effects of two αIIbβ3-inhibitors: Abciximab and Eptifibatide on apoptosis, expression of proline oxidase (POX), signaling molecules ERK 1/2, transcription factor NF-κB and HIF-1α, vascular endothelial growth factor (VEGF) as well as DNA biosynthesis, collagen biosynthesis and prolidase activity in MCF-7 breast cancer cells. Both ligands induced apoptosis, however we found significant differences in molecular mechanism of action between tested αIIbβ3-inhibitors. These differences include expression of POX, HIF-1α, NF-κB,VEGF and collagen biosynthesis. Eptifibatide presented stronger proapoptotic activity in MCF-7 cells than Abciximab. Results of this study suggest that Eptifibatide may be considered as a novel candidate for development of new anticancer therapy.

Penetration Enhancer-Containing Vesicles: Does the Penetration Enhancer Structure Affect Topical Drug Delivery? by Carla Caddeo, Maria Manconi, Chiara Sinico, Donatella Valenti, Christian Celia, Maura Monduzzi, Anna Maria Fadda (1438-1447).
The aim of this study was to elucidate the influence of the edge activator structure on the properties of novel deformable liposomes, Penetration Enhancer-containing Vesicles (PEVs), capable of delivering drugs to the skin. The PEVs were prepared by testing five different amphiphilic penetration enhancers as edge activators in the bilayer composition, together with soy phosphatidylcholine and oleic acid. The penetration enhancers contained the same lipophilic tail (one or more C8-C10 carbon chains) and different hydrophilic heads. Conventional phospholipid liposomes were prepared and used as a control. Lidocaine was chosen as a model drug. Liquid and gelified PEVs were obtained, depending on the penetration enhancer used. The vesicular systems were characterized by measuring size distribution, zeta potential, incorporation efficiency, and monitoring these parameters over 90 days. Accelerated ageing tests were also performed to check the stability of the dispersions. The effects of the different nature of the edge activator on the features of the obtained PEVs were assessed by TEM, SAXS and WAXS, rheological and deformability studies. Higher interactions of the most lipophilic penetration enhancers with the lipid bilayers and a consequent higher stability and elasticity of the obtained PEVs were observed. In vitro experiments through pig skin confirmed the superior potential as carriers for lidocaine of the PEVs prepared with the most lipophilic penetration enhancers, even in comparison with commercial EMLA cream.

Non-Small Cell Lung Carcinoma: An Overview on Targeted Therapy by Ana Vanessa Nascimento, Hassan Bousbaa, Domingos Ferreira, Bruno Sarmento (1448-1463).
Non-small cell lung cancer (NSCLC) represents close to 90% of all lung cancers. When diagnosed, most cases are on an advanced and inoperable stage, with limited therapeutic options. Existing therapies have shown to be insufficient and novel strategies are urgently necessary. New advances in understanding the disease at cellular and molecular level however have helped researchers in devising novel strategies for therapy. These directed therapies limit cancer growth by targeting specific molecules related with tumor progression. Such strategies have shown to be more effective than chemotherapy and radiotherapy and can be complemented to existing therapeutic paradigm in augmenting beneficial outcome. Lung cancer could benefit from such innovative therapy. RNA interference (RNAi) is a sequence-specific gene silencing mechanism and, since its discovery widespread applications have pointed it as a powerful tool in cancer treatment. Several on-going clinical trials have been successfully demonstrating its potential as a novel therapeutic, including in the treatment of NSCLC. Here, we revise the recent findings concerning the therapeutic effects of molecular variations associated with NSCLC and where targeted therapies stand in its treatment, with special focus on RNAi-mediated gene silencing as a powerful strategy for NSCLC treatment.

Proline Oxidase (POX) as A Target for Cancer Therapy by Joanna Kononczuk, Urszula Czyzewska, Joanna Moczydlowska, Arkadiusz Sura|y|ski, Jerzy Palka, Wojciech Miltyk (1464-1469).
Proline dehydrogenase/proline oxidase (PRODH/POX) is an enzyme catalyzing the first step of proline degradation, during which ROS and/or ATP is generated. POX is widely distributed in living organisms and is responsible for a number of regulatory processes such as redox homeostasis, osmotic adaptation, cell signaling and oxidative stress. Recent data provided evidence that POX plays an important role in carcinogenesis and tumor growth. POX may induce apoptosis in both intrinsic and extrinsic way. Due to ROS generation, POX may induce caspase-9 activity, which mediates mitochondrial apoptosis (intrinsic apoptosis pathway). POX can also stimulate TRAIL (tumor necrosis factorrelated apoptosis inducing ligand) and DR5 (death receptor 5) expression, resulting in cleavage of procaspase-8 and thus extrinsic apoptotic pathway. However, this tumor suppressor in certain environmental conditions may act as a prosurvival factor. Genotoxic, inflammatory and metabolic stress may switch POX from tumor growth inhibiting to tumor growth supporting factor. The potential mechanisms which may regulate switching of POX mode are discussed in this review.

Protective Effect of Aronia Melanocarpa Polyphenols on Cadmium Accumulation in the Body: A Study in a Rat Model of Human Exposure to this Metal by Malgorzata M. Brzoska, Malgorzata Galazyn-Sidorczuk, Maria Jurczuk, Michal Tomczyk (1470-1487).
Recently a growing attention has been paid to the possibility of using biologically active compounds, including polyphenols, for the prevention of unfavourable effects of exposure to xenobiotics. The study was aimed to investigate, in a female rat model, whether consumption of Aronia melanocarpa polyphenols (AMP) under chronic exposure to cadmium (Cd) decreases the gastrointestinal absorption and body burden of this heavy metal. For this purpose, Cd turnover (apparent absorption, retention in the body, concentration in the blood, soft tissues and bone tissue, total pool in internal organs, faecal and urinary excretion) was evaluated in the female Wistar rats who were administered only a 0.1% aqueous extract of AMP (prepared from the powdered extract containing 65.74% of polyphenols) as drinking fluid or/and Cd in diet (1 and 5 mg/kg) for up to 24 months. AMP administration under the low Cd treatment (1 mg/kg diet) had only a very slight protective impact against this metal accumulation in the organism, whereas polyphenols application under moderate exposure (5 mg Cd/kg diet) significantly decreased apparent absorption and retention in the body, and increased urinary concentration of this xenobiotic, resulting in its lower concentration in the blood and lower accumulation in soft tissues (mainly in the liver and kidneys) and bone tissue. Based on the study, it can be concluded that consumption of polyphenol- rich products may prevent Cd absorption from the diet polluted by this metal and its accumulation in the females' body, and thus also prevent its toxic action.

(1?3)-α-D-Glucans from Aspergillus spp.: Structural Characterization and Biological Study on their Carboxymethylated Derivatives by Adrian Wiater, Roman Paduch, Adam Choma, Staczek Sylwia, Ma|gorzata Pleszczynska, Michal Tomczyk, Marcello Locatelli, Szczodrak Janusz (1488-1494).
Alkali-soluble polysaccharides (ASPs) were isolated from the cell wall of four Aspergillus species (A. fumigatus, A. nidulans, A. niger, and A. wentii). The chemical and spectroscopic investigations (immunofluorescent labelling, composition analysis, methylation analysis, FTIR, and 1H NMR) indicated that the ASPs were polymers composed almost exclusively of (1?3)-linked α-D-glucose. After carboxymethylation (CM), the activity of (1?3)-α-D-glucans on three human cell lines (HSF, HeLa, and Jurkat) was assessed. Anti-proliferative, cytotoxic, and free radical scavenging action of CM-α-D-glucans was analysed. All the tested CM-α-D-glucans decreased cellular metabolism. However, incubation with CM-α-D-glucan from A. wentii and A. niger increased (by ca. 50%) the viability of HSF cells. Moreover, an over 5-fold increase in the viability was found for Jurkat cells incubated with CM-α-D-glucans from A. fumigatus and A. nidulans. The CM-(1?3)-α-D-glucans from the tested Aspergillus species expressed no free radical scavenging action. Fluorescent staining revealed that CM-α-D-glucans exerted slight toxic effects on cell viability and no action on F-actin filaments of cellular cytoskeleton organization.

Aqueous Extracts of Selected Potentilla Species Modulate Biological Activity of Human Normal Colon Cells by Roman Paduch, Adrian Wiater, Marcello Locatelli, Malgorzata Pleszczy|ska, Michal Tomczyk (1495-1502).
Potentilla L. (Rosaceae) species have been used in traditional and in folk medicine for many years. This study characterized the activity of extracts from aerial parts of selected Potentilla species: P. argentea, P. anserina, P. grandiflora and P. erecta as well as one species of closely related to the genus Potentilla, Drymocallis rupestris (syn. P. rupestris). The biological activities were analyzed using MTT, NR and DPPH assays on CCD 841 CoTr and CCD-18Co cells. Moreover, cell morphology and cytoskeletal actin F-filaments organization and IL-6 and IL-10 levels by ELISA were analyzed after 24 h of incubation. Potentilla extracts at dose levels between 25 and 250 µg/mL were analyzed. For ELISA, 15 µg/mL and 30 ?g/mL were chosen. When mitochondrial succinyl dehydrogenase activity was tested (MTT assay) only extract obtained from P. erecta at lower concentrations (up to 125 µg/mL) suppressed metabolism of myofibroblasts, while epithelial cells mitochondrial enzyme activity increased after incubation with all extracts. In Neutral Red (NR) method cellular membrane disturbance of both cell cultures was found after D. rupestris and P. grandiflora addition. Moreover, strong influence on epithelial cells was also found for P. anserina. All extracts showed similar, concentration-dependent free radical scavenging (DPPH) effect. Potentilla extracts, especially at lower concentration, decreased IL-6 production in myofibroblasts but the level of the cytokine was found to be stable in epithelial cells. IL-10 analysis revealed that P. argentea, D. rupestris, P. erecta extracts decrease cytokine level in myofibroblasts, while only when higher concentration were applied, decreased cytokine level produced by epithelial cells was found. F-actin filaments staining revealed that Potentilla extracts significantly influence on cellular cytoskeleton organization. Potentilla extracts influence on cells of human colon wall lining modulating the main features of them (viability, cytokine production). Moreover, as a free radical reducing agents, may be successfully used in the prevention of colon disorders.

Hyaluronic Acid as a Protein Polymeric Carrier: An Overview and a Report on Human Growth Hormone by Anna Mero, Monica Campisi, Michele Caputo, Christian Cuppari, Antonio Rosato, Oddone Schiavon, Gianfranco Pasut (1503-1511).
Hyaluronic acid (HA) is a natural polysaccharide primarily present in the vitreous humor and in cartilages where it plays a key structural role in organizing the cartilage extracellular matrix. HA is used in a wide range of applications including treatment of arthritis (as a viscosupplementation agent for joints) and in a variety of cosmetic injectable products. Its safety profile is thus well established. Thanks to its high biocompatibility and targeting properties, HA has also been investigated for use as a carrier of anticancer drugs and, recently, also of proteins. Its role in the last case is a particularly challenging one as dedicated coupling chemistries are required to preserve the protein's conformation and activity. This study focuses on the state of the art on protein HAylation. New data from our laboratory on the local delivery of specific biologics to joints will also be outlined.

Microscopies at the Nanoscale for Nano-Scale Drug Delivery Systems by Luciana Dini, Elisa Panzarini, Stefania Mariano, Daniele Passeri, Melania Reggente, Marco Rossi, Cristian Vergallo (1512-1530).
One of the frontier of nanoscience is undoubtedly represented by the use of nanotechnologies in the pharmaceutical research. During the last decades a big family of nanostructures that have a surface-acting action, such as NanoParticles (NPs), lipid nanocarriers and many more, have been developed to be used as Drug Delivery Systems (DDSs). However, these nanocarriers opened also new frontiers in nanometrology, requiring an accurate morphological characterization, near atomic resolution, before they are really available to clinicians to ascertain their elemental composition, to exclude the presence of contaminants introduced during the synthesis procedure and to ensure biocompatibility. Classical Transmission (TEM) and Scanning Electron Microscopy (SEM) techniques frequently have to be adapted for an accurate analysis of formulation morphology, especially in case of hydrated colloidal systems. Specific techniques such as environmental scanning microscopy and/or cryo preparation are required for their investigation. Analytical Electron Microscopy (AEM) techniques such as Electron Energy-Loss Spectroscopy (EELS) or Energy-Dispersive X-ray Spectroscopy (EDXS) are additional assets to determine the elemental composition of the systems. Here we will discuss the importance of Electron Microscopy (EM) as a reliable tool in the pharmaceutical research of the 21st century, focalizing our attention on advantages and limitations of different kind of NPs (in particular silver and carbon NPs, cubosomes) and vesicles (liposomes and niosomes).

Silencing of Tumor Necrosis Factor Receptor-1 in Human Lung Microvascular Endothelial Cells Using Particle Platforms for siRNA Delivery by Litao Bai, Helen A. Andersson, Kellie I. McConnell, Diana L. Chan, Michael Hernandez, Javier Gonzalez, Xuewu Liu, Saverio La Francesca, Jason H. Sakamoto, Rita E. Serda (1531-1539).
Acute lung injury (ALI) and its most severe manifestation, acute respiratory distress syndrome (ARDS), is a clinical syndrome defined by acute hypoxemic respiratory failure and bilateral pulmonary infiltrates consistent with edema. In-hospital mortality is 38.5% for AL, and 41.1% for ARDS. Activation of alveolar macrophages in the donor lung causes the release of pro-inflammatory chemokines and cytokines, such as TNF-α. To determine the relevance of TNF-α in disrupting bronchial endothelial cell function, we stimulated human THP-1 macrophages with lipopolysaccharide (LPS) and used the resulting cytokine-supplemented media to disrupt normal endothelial cell functions. Endothelial tube formation was disrupted in the presence of LPS-activated THP- 1 conditioned media, with reversal of the effect occurring in the presence of 0.1µg/ml Enbrel, indicating that TNF-α was the major serum component inhibiting endothelial tube formation. To facilitate lung conditioning, we tested liposomal and porous silicon (pSi) delivery systems for their ability to selectively silence TNFR1 using siRNA technology. Of the three types of liposomes tested, only cationic liposomes had substantial endothelial uptake, with human cells taking up 10-fold more liposomes than their pig counterparts; however, non-specific cellular activation prohibited their use as immunosuppressive agents. On the other hand, pSi microparticles enabled the accumulation of large amounts of siRNA in endothelial cells compared to standard transfection with Lipofectamine® LTX, in the absence of non-specific activation of endothelia. Silencing of TNFR1 decreased TNF-α mediated inhibition of endothelial tube formation, as well as TNF-α-induced upregulation of ICAM-1, VCAM, and E-selection in human lung microvascular endothelial cells.

Proteomic Profiling of a Biomimetic Drug Delivery Platform by Claudia Corbo, Alessandro Parodi, Michael Evangelopoulos, David A. Engler, Rise K. Matsunami, Anthony C. Engler, Roberto Molinaro, Shilpa Scaria, Francesco Salvatore, Ennio Tasciotti (1540-1547).
Current delivery platforms are typically designed for prolonged circulation that favors superior accumulation of the payload in the targeted tissue. The design of efficient surface modifications determines both a longer circulation time and targeting abilities of particles. The optimization of synthesis protocols to efficiently combine targeting molecules and elements that allow for an increased circulation time can be challenging and almost impossible when several functional elements are needed. On the other hand, in the last decade, the development of bioinspired technologies was proposed as a new approach with which to increase particle safety, biocompatibility and targeting, while maintaining the synthesis protocols simple and reproducible. Recently, we developed a new drug delivery system inspired by the biology of immune cells called leukolike vector (LLV) and formed by a nanoporous silicon core and a shell derived from the leucocyte cell membrane. The goal of this study is to investigate the protein content of the LLV. Here we report the proteomic profiling of the LLV and demonstrate that our approach can be used to modify the surface of synthetic particles with more than 150 leukocyte membraneassociated proteins that determine particle safety, circulation time and targeting abilities towards inflamed endothelium.

Nano Traditional Chinese Medicine: Current Progresses and Future Challenges by Yi Huang, Yinglan Zhao, Fang Liu, Songqing Liu (1548-1562).
Nano traditional Chinese medicine (nano TCM) refers to bioactive ingredients, bioactive parts, medicinal materials or complex prescription, being approximately 100 nm in size, which are processed by nanotechnology. Nano TCM is a product of the TCM modernization, and is an application of nanotechnology in the field of TCM. This article reviews literatures on researches of nano TCM, which were published in the past 15 years. Different nanotechnologies have been used in preparation of Nano TCM in view of the varying aims of the study. The mechanical crushing technology is the main approach for nanolization of TCM material and complex prescription, and nanoparticulate drug delivery systems is the main approach for nanolization of bioactive ingredients or bioactive parts in TCM. Nano TCM has a number of advantages, for example, enhancing the bioavailability of TCM, reducing the adverse effects of TCM, achieving sustained release, attaining targeted delivery, enhancing pharmacological effects and improving the administration route of TCM. However, there are still many problems that must be resolved in nano TCM research. The main challenges to nano TCM include the theory system of TCM modernization, preparation technology, safety and stability, etc.