Current Genomics (v.16, #4)

Meet Our Editorial Board Members: by Gjumrakch Aliev (213-213).

Analysis of PRKN Variants and Clinical Features in Polish Patients with Parkinson's Disease by Anna Oczkowska, Jolanta Florczak-Wyspianska, Agnieszka Permoda-Osip, Michal Owecki, Margarita Lianeri, Wojciech Kozubski, Jolanta Dorszewska (215-223).
The etiology of Parkinson's disease (PD) is still unclear, but mutations in PRKN have provided some biological insights. The role of PRKN mutations and other genetic variation in determining the clinical features of PD remains unresolved. The aim of the study was to analyze PRKN mutations in PD and controls in the Polish population and to try to correlate between the presence of genetic variants and clinical features. We screened for PRKN mutations in 90 PD patients and 113 controls and evaluated clinical features in these patients. We showed that in the Polish population 4% of PD patients had PRKN mutations (single or with additional polymorphism) while single heterozygous polymorphisms (S167N, E310D, D394N) of PRKN were present in 21% of sporadic PD. Moreover, 5% PD patients had more than one PRKN change (polymorphisms and mutations). Detected PRKN variants moderately correlated with PD course and response to L-dopa. It also showed that other PARK genes (SNCA, HTRA2, SPR) mutations probably may additionally influence PD risk and clinical features. PRKN variants are relatively common in our Polish series of patients with PD. Analysis of the PRKN gene may be useful in determining clinical phenotype, and helping with diagnostic and prognostic procedures in the future.

Role of Protein Tyrosine Phosphatases in Plants by Alka Shankar, Nisha Agrawal, Manisha Sharma, Amita Pandey, Girdhar K. Pandey (224-236).
Reversible protein phosphorylation is a crucial regulatory mechanism that controls many biological processes in eukaryotes. In plants, phosphorylation events primarily occur on serine (Ser) and threonine (Thr) residues, while in certain cases, it was also discovered on tyrosine (Tyr) residues. In contrary to plants, extensive reports on Tyr phosphorylation regulating a large numbers of biological processes exist in animals. Despite of such prodigious function in animals, Tyr phosphorylation is a least studied mechanism of protein regulation in plants. Recently, various chemical analytical procedures have strengthened the view that Tyr phosphorylation is equally prevalent in plants as in animals. However, regardless of Tyr phosphorylation events occuring in plants, no evidence could be found for the existence of gene encoding for Tyr phosphorylation i.e. the typical Tyr kinases. Various methodologies have suggested that plant responses to stress signals and developmental processes involved modifications in protein Tyr phosphorylation. Correspondingly, various reports have established the role of PTPs (Protein Tyrosine Phosphatases) in the dephosphorylation and inactivation of mitogen activated protein kinases (MAPKs) hence, in the regulation of MAPK signaling cascade. Besides this, many dual specificity protein phosphatases (DSPs) are also known to bind starch and regulate starch metabolism through reversible phosphorylation. Here, we are emphasizing the significant progress on protein Tyr phosphatases to understand the role of these enzymes in the regulation of post-translational modification in plant physiology and development.

It's Time for An Epigenomics Roadmap of Heart Failure by Roberto Papait, Nadia Corrado, Francesca Rusconi, Simone Serio, Michael V.G. Latronico (237-244).
The post-genomic era has completed its first decade. During this time, we have seen an attempt to understand life not just through the study of individual isolated processes, but through the appreciation of the amalgam of complex networks, within which each process can influence others. Greatly benefiting this view has been the study of the epigenome, the set of DNA and histone protein modifications that regulate gene expression and the function of regulatory non-coding RNAs without altering the DNA sequence itself. Indeed, the availability of reference genome assemblies of many species has led to the development of methodologies such as ChIP-Seq and RNA-Seq that have allowed us to define with high resolution the genomic distribution of several epigenetic elements and to better comprehend how they are interconnected for the regulation of gene expression. In the last few years, the use of these methodologies in the cardiovascular field has contributed to our understanding of the importance of epigenetics in heart diseases, giving new input to this area of research. Here, we review recently acquired knowledge on the role of the epigenome in heart failure, and discuss the need of an epigenomics roadmap for cardiovascular disease.

Inside the Pan-genome - Methods and Software Overview by Luis Carlos Guimaraes, Leandro Benevides de Jesus, Marcus Vinicius Canario Viana, Artur Silva, Rommel Thiago Juca Ramos, Siomar de Castro Soares, Vasco Azevedo (245-252).
The number of genomes that have been deposited in databases has increased exponentially after the advent of Next-Generation Sequencing (NGS), which produces high-throughput sequence data; this circumstance has demanded the development of new bioinformatics software and the creation of new areas, such as comparative genomics. In comparative genomics, the genetic content of an organism is compared against other organisms, which helps in the prediction of gene function and coding region sequences, identification of evolutionary events and determination of phylogenetic relationships. However, expanding comparative genomics to a large number of related bacteria, we can infer their lifestyles, gene repertoires and minimal genome size. In this context, a powerful approach called Pan-genome has been initiated and developed. This approach involves the genomic comparison of different strains of the same species, or even genus. Its main goal is to establish the total number of non-redundant genes that are present in a determined dataset. Pan-genome consists of three parts: core genome; accessory or dispensable genome; and species-specific or strain-specific genes. Furthermore, pan-genome is considered to be 'open' as long as new genes are added significantly to the total repertoire for each new additional genome and 'closed' when the newly added genomes cannot be inferred to significantly increase the total repertoire of the genes. To perform all of the required calculations, a substantial amount of software has been developed, based on orthologous and paralogous gene identification.

Clinical Next Generation Sequencing for Precision Medicine in Cancer by Ling Dong, Wanheng Wang, Alvin Li, Rina Kansal, Yuhan Chen, Hong Chen, Xinmin Li (253-263).
Rapid adoption of next generation sequencing (NGS) in genomic medicine has been driven by low cost, high throughput sequencing and rapid advances in our understanding of the genetic bases of human diseases. Today, the NGS method has dominated sequencing space in genomic research, and quickly entered clinical practice. Because unique features of NGS perfectly meet the clinical reality (need to do more with less), the NGS technology is becoming a driving force to realize the dream of precision medicine. This article describes the strengths of NGS, NGS panels used in precision medicine, current applications of NGS in cytology, and its challenges and future directions for routine clinical use.

Role of Genetic Factors in the Pathogenesis of Radial Deficiencies in Humans by Amira Elmakky, Ilaria Stanghellini, Antonio Landi, Antonio Percesepe (264-278).
Radial deficiencies (RDs), defined as under/abnormal development or absence of any of the structures of the forearm, radial carpal bones and thumb, occur with a live birth incidence ranging from 1 out of 30,000 to 1 out 6,000 newborns and represent about one third/one fourth of all the congenital upper limb anomalies. About half of radial disorders have a mendelian cause and pattern of inheritance, whereas the remaining half appears sporadic with no known gene involved. In sporadic forms certain anomalies, such as thumb or radial hypoplasia, may occur either alone or in association with systemic conditions, like vertebral abnormalities or renal defects. All the cases with a mendelian inheritance are syndromic forms, which include cardiac defects (in Holt-Oram syndrome), bone marrow failure (in Fanconi anemia), platelet deficiency (in thrombocytopenia-absent-radius syndrome), ocular motility impairment (in Okihiro syndrome). The genetics of radial deficiencies is complex, characterized by genetic heterogeneity and high inter- and intra-familial clinical variability: this review will analyze the etiopathogenesis and the genotype/phenotype correlations of the main radial deficiency disorders in humans.

Genome-wide Scanning and Characterization of Sorghum bicolor L. Heat Shock Transcription Factors by M. Nagaraju, Palakolanu Sudhakar Reddy, S. Anil Kumar, Rakesh K. Srivastava, P. B. Kavi Kishor, D. Manohar Rao (279-291).
A genome-wide scanning of Sorghum bicolor resulted in the identification of 25 SbHsf genes. Phylogenetic analysis shows the ortholog genes that are clustered with only rice, representing a common ancestor. Promoter analysis revealed the identification of different cis-acting elements that are responsible for abiotic as well as biotic stresses. Hsf domains like DBD, NLS, NES, and AHA have been analyzed for their sequence similarity and functional characterization. Tissue specific expression patterns of Hsfs in different tissues like mature embryo, seedling, root, and panicle were studied using real-time PCR. While Hsfs4 and 22 are highly expressed in panicle, 4 and 9 are expressed in seedlings. Sorghum plants were exposed to different abiotic stress treatments but no expression of any Hsf was observed when seedlings were treated with ABA. High level expression of Hsf1 was noticed during high temperature as well as cold stresses, 4 and 6 during salt and 5, 6, 10, 13, 19, 23 and 25 during drought stress. This comprehensive analysis of SbHsf genes will provide an insight on how these genes are regulated in different tissues and also under different abiotic stresses and help to determine the functions of Hsfs during drought and temperature stress tolerance.