BBA - Molecular and Cell Biology of Lipids (v.1841, #5)

New frontiers in sphingolipid biology by Joost Holthuis; Yasuyuki Igarashi (645-646).

Sphingolipid homeostasis in the web of metabolic routes by Auxiliadora Aguilera-Romero; Charlotte Gehin; Howard Riezman (647-656).
Sphingolipids play a key role in cells as structural components of membrane lipid bilayers and signaling molecules implicated in important physiological and pathological processes. Their metabolism is tightly regulated. Mechanisms controlling sphingolipid metabolism are far from being completely understood. However, they already reveal the integration of sphingolipids in the whole metabolic network as signaling devices that coordinate different metabolic pathways. A picture of sphingolipids integrated into metabolic networks might help to understand sphingolipid homeostasis. This review describes recent advances in the regulation of de novo sphingolipid synthesis with a focus on the bridges that exist with other metabolic pathways and the importance of this crosstalk in the control of sphingolipid homeostasis. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Sphingolipid; Homeostasis; Metabolism; Eucaryote;

Sphingolipids and lifespan regulation by Xinhe Huang; Bradley R. Withers; Robert C. Dickson (657-664).
Diseases including cancer, type 2 diabetes, cardiovascular and immune dysfunction and neurodegeneration become more prevalent as we age, and combined with the increase in average human lifespan, place an ever increasing burden on the health care system. In this chapter we focus on finding ways of modulating sphingolipids to prevent the development of age-associated diseases or delay their onset, both of which could improve health in elderly, fragile people. Reducing the incidence of or delaying the onset of diseases of aging has blossomed in the past decade because of advances in understanding signal transduction pathways and cellular processes, especially in model organisms, that are largely conserved in most eukaryotes and that can be modulated to reduce signs of aging and increase health span. In model organisms such interventions must also increase lifespan to be considered significant, but this is not a requirement for use in humans. The most encouraging interventions in model organisms involve lowering the concentration of one or more sphingolipids so as to reduce the activity of key signaling pathways, one of the most promising being the Target of Rapamycin Complex 1 (TORC1) protein kinase pathway. Other potential ways in which modulating sphingolipids may contribute to improving the health profile of the elderly is by reducing oxidative stresses, inflammatory responses and growth factor signaling. Lastly, perhaps the most interesting way to modulate sphingolipids and promote longevity is by lowering the activity of serine palmitoyltransferase, the first enzyme in the de novo sphingolipid biosynthesis pathway. Available data in yeasts and rodents are encouraging and as we gain insights into molecular mechanisms the strategies for improving human health by modulating sphingolipids will become more apparent. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Ceramide; Sphingosing-1-phosphate; Myriocin; Autophagy; Aging;

Sphingolipids as modulators of membrane proteins by Andreas Max Ernst; Britta Brügger (665-670).
The diversity of the transmembranome of higher eukaryotes is matched by an enormous diversity of sphingolipid classes and molecular species. The intrinsic properties of sphingolipids are not only suited for orchestrating lateral architectures of biological membranes, but their molecular distinctions also allow for the evolution of protein motifs specifically recognising and interacting with individual lipids. Although various reports suggest a role of sphingolipids in membrane protein function, only a few cases have determined the specificity of these interactions. In this review we discuss examples of specific protein–sphingolipid interactions for which a modulator-like dependency on sphingolipids was assigned to specific proteins. These novel functions of sphingolipids in specific protein–lipid assemblies contribute to the complexity of the sphingolipid classes and other molecular species observed in animal cells. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Sphingolipid; Protein–lipid interaction; Receptor activity; Membrane domain; Molecular lipid species; Raft;

Ceramide synthases as potential targets for therapeutic intervention in human diseases by Joo-Won Park; Woo-Jae Park; Anthony H. Futerman (671-681).
Ceramide is located at a key hub in the sphingolipid metabolic pathway and also acts as an important cellular signaling molecule. Ceramide contains one acyl chain which is attached to a sphingoid long chain base via an amide bond, with the acyl chain varying in length and degree of saturation. The identification of a family of six mammalian ceramide synthases (CerS) that synthesize ceramide with distinct acyl chains, has led to significant advances in our understanding of ceramide biology, including further delineation of the role of ceramide in various pathophysiologies in both mice and humans. Since ceramides, and the complex sphingolipids generated from ceramide, are implicated in disease, the CerS might potentially be novel targets for therapeutic intervention in the diseases in which the ceramide acyl chain length is altered. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Sphingolipid; Ceramide synthase; Acyl chain length; Disease; Specificity; Therapeutic target;

Ceramidase (CDase) is an enzyme that hydrolyzes the N-acyl linkage between the sphingoid base and fatty acid of ceramide. These enzymes are classified into three distinct groups, acid (Asah1), neutral (Asah2), and alkaline (Asah3) CDases, based on their primary structure and optimum pH. Acid CDase catabolizes ceramide in lysosomes and is found only in vertebrates. In contrast, the distribution of neutral and alkaline CDases is broad, with both being found in species ranging from lower eukaryotes to mammals; however, only neutral CDase is found in prokaryotes, including some pathogenic bacteria. Neutral CDase is thought to have gained a specific domain (mucin box) in the N-terminal region after the vertebrate split, allowing the enzyme to be stably expressed at the plasma membrane as a type II membrane protein. The X-ray crystal structure of neutral CDase was recently solved, uncovering a unique structure and reaction mechanism for the enzyme. Neutral CDase contains a zinc ion in the active site that functions as a catalytic center, and the hydrolysis of the N-acyl linkage in ceramide proceeds through a mechanism that is similar to that described for zinc-dependent carboxypeptidase. This review describes the structure, reaction mechanism, and biological functions of neutral CDase in association with the molecular evolution, topology, and mechanical conformation. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Ceramide; Sphingolipid; Metabolism; Molecular evolution; X-ray crystal structure; Reaction mechanism;

Sphingomyelin constitutes membrane microdomains such as lipid raft, caveolae, and clathrin-coated pits and implicates in the regulation of trans-membrane signaling. On the other hand, sphingomyelin emerges as an important molecule to generate bioactive sphingolipids through ceramide. Sphingomyelin synthase is an enzyme that generates sphingomyelin and diacylglycerol from phosphatidylcholine and ceramide. Although ceramide has a well-known role as a lipid mediator to regulate cell death and survival, the only known biological role of sphingomyelin regulated by sphingomyelin synthases was limited to being a source of bioactive lipids. Here, we describe the basic characters of sphingomyelin synthases and discuss additional roles for sphingomyelin and sphingomyelin synthase in biological functions including cell migration, apoptosis, autophagy, and cell survival/proliferation as well as in human disorders such as cancer and cardiovascular disorders. It is expected that a better understanding of the role of sphingomyelin regulated by sphingomyelin synthase will shed light on new mechanisms in cell biology, physiology and pathology. In the future, novel therapeutic procedures for currently incurable diseases could be developed through modifying the function of not only sphingolipids, such as sphingomyelin and ceramide, but also of their regulatory enzymes. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Sphingomyelin; Ceramide; Sphingomyelin synthase; Membrane; Cell functions; Malignancies;

Life creates many varieties of lipids. The choline-containing sphingophospholipid sphingomyelin (SM) exists ubiquitously or widely in vertebrates and lower animals, but is absent or rare in bacteria, fungi, protists, and plants. In the biosynthesis of SM, ceramide, which is synthesized in the endoplasmic reticulum, is transported to the Golgi region by the ceramide transport protein CERT, probably in a non-vesicular manner, and is then converted to SM by SM synthase, which catalyzes the reaction of phosphocholine transfer from phosphatidylcholine (PtdCho) to ceramide. Recent advances in genomics and lipidomics indicate that the phylogenetic occurrence of CERT and its orthologs is nearly parallel to that of SM. Based on the chemistry of lipids together with evolutionary aspects of SM and CERT, several concepts are here proposed. SM may serve as a chemically inert and robust, but non-covalently interactive lipid class at the outer leaflet of the plasma membrane. The functional domains and peptidic motifs of CERT are separated by exon units, suggesting an exon-shuffling mechanism for the generation of an ancestral CERT gene. CERT may have co-evolved with SM to bypass a competing metabolic reaction at the bifurcated point in the anabolism of ceramide. Human CERT is identical to the splicing variant of human Goodpasture antigen-binding protein (GPBP) annotated as an extracellular non-canonical serine/threonine protein kinase. The relationship between CERT and GPBP has also been discussed from an evolutionary aspect. Moreover, using an analogy of “compatible (or osmoprotective) solutes” that can accumulate to very high concentrations in the cytosol without denaturing proteins, choline phospholipids such as PtdCho and SM may act as compatible phospholipids in biomembranes. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Choline; Compatible solute; Lipid transport; Membrane contact; Pleckstrin homology; Goodpasture antigen;

Sphingomyelin (SM) is one of the major lipids in the mammalian plasma membrane. Multiple lines of evidence suggest that SM plays at least two functional roles in the cell, as a reservoir of lipid second messengers and as a platform for signaling molecules. To understand the molecular organization and dynamics of the SM-rich membrane domains, new approaches have been developed utilizing newly characterized specific SM-binding probes and state-of-the-art microscopy techniques. The toxic protein from the sea anemone, equinatoxin II, has been characterized as a specific probe for SM. The cytolytic protein from the earthworm, lysenin, has also been used as a SM-specific probe for the analysis of the heterogeneity of SM-rich membrane domains. Recently, using a non-toxic form of lysenin, we showed the spatial and temporal localization of SM in the plasma membrane by confocal and super-resolution microscopy. New microscopy techniques have also been introduced by other groups to help visualize membrane lipid domains. Here we review the most recent studies on imaging the SM-rich domains in biological membranes. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Sphingomyelin-binding toxin; Equinatoxin II; Lysenin; Super-resolution microscopy;

Sphingolipid regulation of ezrin, radixin, and moesin proteins family: Implications for cell dynamics by Mohamad Adada; Daniel Canals; Yusuf A. Hannun; Lina M. Obeid (727-737).
A key but poorly studied domain of sphingolipid functions encompasses endocytosis, exocytosis, cellular trafficking, and cell movement. Recently, the ezrin, radixin and moesin (ERM) family of proteins emerged as novel potent targets regulated by sphingolipids. ERMs are structural proteins linking the actin cytoskeleton to the plasma membrane, also forming a scaffold for signaling pathways that are used for cell proliferation, migration and invasion, and cell division. Opposing functions of the bioactive sphingolipid ceramide and sphingosine-1-phosphate (S1P), contribute to ERM regulation. S1P robustly activates whereas ceramide potently deactivates ERM via phosphorylation/dephosphorylation, respectively. This recent dimension of cytoskeletal regulation by sphingolipids opens up new avenues to target cell dynamics, and provides further understanding of some of the unexplained biological effects mediated by sphingolipids. In addition, these studies are providing novel inroads into defining basic mechanisms of regulation and action of bioactive sphingolipids. This review describes the current understanding of sphingolipid regulation of the cytoskeleton, it also describes the biologies in which ERM proteins have been involved, and finally how these two large fields have started to converge. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Sphingolipids; Ezrin; Radixin; Moesin; Ceramide; Sphingosine-1-phosphate;

Visualizing S1P-directed cellular egress by intravital imaging by Christina C. Giannouli; Panagiotis Chandris; Richard L. Proia (738-744).
Sphingosine-1-phosphate (S1P) is a bioactive lipid that provides cellular signals through plasma membrane G protein-coupled receptors. The S1P receptor signaling system has a fundamental and widespread function in licensing the exit and release of hematopoietically derived cells from various tissues into the circulation. Although the outlines of the mechanism have been established through genetic and pharmacologic perturbations, the temporal and spatial dynamics of the cellular events involved have been unclear. Recently, two-photon intravital imaging has been applied to living tissues to visualize the cellular movements and interactions that occur during egress processes. Here we discuss how some of these recent findings provide a clearer picture regarding S1P receptor signaling in modulating cell egress into the circulation. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Sphingosine-1-phosphate; Sphingolipid; Signaling; Gradient; Receptor; Two-photon microscopy;

Second generation S1P pathway modulators: Research strategies and clinical developments by Marc Bigaud; Danilo Guerini; Andreas Billich; Frederic Bassilana; Volker Brinkmann (745-758).
Multiple Sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system (CNS) through demyelination and neurodegeneration. Until recently, major therapeutic treatments have relied on agents requiring injection delivery. In September 2010, fingolimod/FTY720 (Gilenya, Novartis) was approved as the first oral treatment for relapsing forms of MS. Fingolimod causes down-modulation of S1P1 receptors on lymphocytes which prevents the invasion of autoaggressive T cells into the CNS. In astrocytes, down-modulation of S1P1 by the drug reduces astrogliosis, a hallmark of MS, thereby allowing restoration of productive astrocyte communication with other neural cells and the blood brain barrier. Animal data further suggest that the drug directly supports the recovery of nerve conduction and remyelination. In human MS, such mechanisms may explain the significant decrease in the number of inflammatory markers on brain magnetic resonance imaging in recent clinical trials, and the reduction of brain atrophy by the drug. Fingolimod binds to 4 of the 5 known S1P receptor subtypes, and significant efforts were made over the past 5 years to develop next generation S1P receptor modulators and determine the minimal receptor selectivity needed for maximal therapeutic efficacy in MS patients. Other approaches considered were competitive antagonists of the S1P1 receptor, inhibitors of the S1P lyase to prevent S1P degradation, and anti-S1P antibodies. Below we discuss the current status of the field, and the functional properties of the most advanced compounds. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Immunomodulator; S1P modulator; S1P1; Fingolimod;

Molecular and physiological functions of sphingosine 1-phosphate transporters by Tsuyoshi Nishi; Naoki Kobayashi; Yu Hisano; Atsuo Kawahara; Akihito Yamaguchi (759-765).
Sphingosine 1-phosphate (S1P) is a lipid mediator that plays important roles in diverse cellular functions such as cell proliferation, differentiation and migration. S1P is synthesized inside the cells and subsequently released to the extracellular space, where it binds to specific receptors that are located on the plasma membranes of target cells. Accumulating recent evidence suggests that S1P transporters including SPNS2 mediate S1P release from the cells and are involved in the physiological functions of S1P. In this review, we discuss recent advances in our understanding of the mechanism and physiological functions of S1P transporters. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Sphingosine 1-phosphate; Transporter; SPNS2; Export; ABC transporter;

The sphingolipid metabolite sphingosine 1-phosphate (S1P) is a well-known lipid mediator. As a lipid mediator, S1P must be present in extracellular space and bind to its cell surface receptors (S1P1–5). However, most S1P, synthesized intracellularly, is metabolized without being released into extracellular space, in other words, without functioning as a lipid mediator in the vast majority of cells except those supplying plasma and lymph S1P such as blood cells and endothelial cells. Instead, intracellular S1P plays an important role as an intermediate of the sole sphingolipid-to-glycerophospholipid metabolic pathway. The degradation of S1P by S1P lyase is the first irreversible reaction (committed step) of this pathway. This metabolic pathway is conserved in eukaryotes from yeast to human, indicating its much older origin than the function of S1P as a lipid mediator, which is found to be present only in vertebrates and chordates. The sphingolipid-to-glycerophospholipid metabolism takes place ubiquitously in mammalian tissues, and its defect causes an aberration of several tissue functions as well as abnormal lipid metabolism. Although this metabolic pathway has been known for over four decades, only recently the precise reactions and enzymes involved in this pathway have been revealed. This review will focus on the recent advances in our understanding of the sphingolipid metabolic pathway via S1P and its physiological and pathological roles. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Sphingosine 1-phosphate; Metabolism; Membrane; Lipid; Sphingolipid; Glycerophospholipid;

Sphingolipids in colon cancer by Mónica García-Barros; Nicolas Coant; Jean-Philip Truman; Ashley J. Snider; Yusuf A. Hannun (773-782).
Colorectal cancer is one of the major causes of death in the western world. Despite increasing knowledge of the molecular signaling pathways implicated in colon cancer, therapeutic outcomes are still only moderately successful. Sphingolipids, a family of N-acyl linked lipids, have not only structural functions but are also implicated in important biological functions. Ceramide, sphingosine and sphingosine-1-phosphate are the most important bioactive lipids, and they regulate several key cellular functions. Accumulating evidence suggests that many cancers present alterations in sphingolipids and their metabolizing enzymes. The aim of this review is to discuss the emerging roles of sphingolipids, both endogenous and dietary, in colon cancer and the interaction of sphingolipids with WNT/β-catenin pathway, one of the most important signaling cascades that regulate development and homeostasis in intestine. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Colorectal cancer; Sphingolipids; Dietary; Ceramide; Sphingosine; Sphingosine-1-phosphate;

Autophagy paradox and ceramide by Wenhui Jiang; Besim Ogretmen (783-792).
Sphingolipid molecules act as bioactive lipid messengers and exert their actions on the regulation of various cellular signaling pathways. Sphingolipids play essential roles in numerous cellular functions, including controlling cell inflammation, proliferation, death, migration, senescence, tumor metastasis and/or autophagy. Dysregulated sphingolipid metabolism has been also implicated in many human cancers. Macroautophagy (referred to here as autophagy) “self-eating” is characterized by nonselective sequestering of cytosolic materials by an isolation membrane, which can be either protective or lethal for cells. Ceramide (Cer), a central molecule of sphingolipid metabolism, has been extensively implicated in the control of autophagy. The increasing evidence suggests that Cer is highly involved in mediating two opposing autophagic pathways, which regulate either cell survival or death, which is referred here as autophagy paradox. However, the underlying mechanism that regulates the autophagy paradox remains unclear. Therefore, this review focuses on recent studies with regard to the regulation of autophagy by Cer and elucidates the roles and mechanisms of action of Cer in controlling autophagy paradox. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Sphingolipid; Ceramide; Autophagy; Mitophagy; Cell death;

Pathological roles of ceramide and its metabolites in metabolic syndrome and Alzheimer's disease by Kohei Yuyama; Susumu Mitsutake; Yasuyuki Igarashi (793-798).
The public health burden of metabolic syndrome (MetS), a multiplex risk factor that arises from insulin resistance accompanying abnormal adipose conditions, and Alzheimer's disease (AD), the most common form of dementia, continues to expand. Current available therapies for these disorders are of limited effectiveness. Recent findings have indicated that alternations in sphingolipid metabolism contribute to the development of these pathologies. Sphingolipids are major constituents of the plasma membrane, where they are known to form several types of microdomains, and are potent regulators for a variety of physiological processes. Many groups, including ours, have demonstrated that membrane sphingolipids, especially ceramide and its metabolites such as ceramide 1-phosphate, have roles in arteriosclerosis, obesity, diabetes, and inflammation associated with MetS. Aberrant sphingolipid profiles have been observed in human AD brains, and accumulated evidence has demonstrated that changes in membrane properties induced by defective sphingolipid metabolism impair generation and degradation of amyloid-β peptide (Aβ), a pathogenic agent of AD. In this review, we summarize current knowledge and pathophysiological implications of the roles of SLs in MetS and AD, to provide insight into the SL metabolic pathways as potential targets for therapy of these diseases. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Sphingolipid; Glycosphingolipid; Ceramide; Sphingomyelin; Metabolic syndrome; Alzheimer's disease;

Sphingolipids and lysosomal pathologies by Heike Schulze; Konrad Sandhoff (799-810).
Endocytosed (glyco)sphingolipids are degraded, together with other membrane lipids in a stepwise fashion by endolysosomal enzymes with the help of small lipid binding proteins, the sphingolipid activator proteins (SAPs), at the surface of intraluminal lysosomal vesicles. Inherited defects in a sphingolipid-degrading enzyme or SAP cause the accumulation of the corresponding lipid substrates, including cytotoxic lysosphingolipids, such as galactosylsphingosine and glucosylsphingosine, and lead to a sphingolipidosis. Analysis of patients with prosaposin deficiency revealed the accumulation of intra-endolysosmal vesicles and membrane structures (IM). Feeding of prosaposin reverses the storage, suggesting inner membrane structures as platforms of sphingolipid degradation. Water soluble enzymes can hardly attack sphingolipids embedded in the membrane of inner endolysosomal vesicles. The degradation of sphingolipids with few sugar residues therefore requires the help of the SAPs, and is strongly stimulated by anionic membrane lipids. IMs are rich in anionic bis(monoacylglycero)phosphate (BMP). This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Lysosomal lipids; Membrane degradation; Lipid storage; Sphingolipid catabolism;

Gaucher disease and Fabry disease: New markers and insights in pathophysiology for two distinct glycosphingolipidoses by Maria J. Ferraz; Wouter W. Kallemeijn; Mina Mirzaian; Daniela Herrera Moro; Andre Marques; Patrick Wisse; Rolf G. Boot; Lianne I. Willems; H.S. Overkleeft; J.M. Aerts (811-825).
Gaucher disease (GD) and Fabry disease (FD) are two relatively common inherited glycosphingolipidoses caused by deficiencies in the lysosomal glycosidases glucocerebrosidase and alpha-galactosidase A, respectively. For both diseases enzyme supplementation is presently used as therapy. Cells and tissues of GD and FD patients are uniformly deficient in enzyme activity, but the two diseases markedly differ in cell types showing lysosomal accumulation of the glycosphingolipid substrates glucosylceramide and globotriaosylceramide, respectively. The clinical manifestation of Gaucher disease and Fabry disease is consequently entirely different and the response to enzyme therapy is only impressive in the case of GD patients. This review compares both glycosphingolipid storage disorders with respect to similarities and differences. Presented is an update on insights regarding pathophysiological mechanisms as well as recently available biochemical markers and diagnostic tools for both disorders. Special attention is paid to sphingoid bases of the primary storage lipids in both diseases. The value of elevated glucosylsphingosine in Gaucher disease and globotriaosylsphingosine in Fabry disease for diagnosis and monitoring of disease is discussed as well as the possible contribution of the sphingoid bases to (patho)physiology. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Keywords: Glycosphingolipid; Lysosome; Gaucher disease; Fabry disease; Galactotriaosylsphingosine; Activity-based probe;