Atmospheric Environment (v.144, #C)

Greenhouse Gas (GHG) emissions are a growing problem in the United States (US). Methane (CH4) is a potent GHG produced by several stages of the natural gas sector. Current scrutiny focuses on the natural gas boom associated with unconventional shale gas; however, focus should still be given to conventional wells and outdated equipment. In an attempt to quantify these emissions, researchers modified an off-road utility terrain vehicle (UTV) to include a Full Flow Sampling system (FFS) for methane quantification. GHG emissions were measured from non-producing and remote low throughput natural gas components in the Marcellus region. Site audits were conducted at eleven locations and leaks were identified and quantified at seven locations including at a low throughput conventional gas and oil well, two out-of-service gathering compressors, a conventional natural gas well, a coalbed methane well, and two conventional and operating gathering compressors. No leaks were detected at the four remaining sites, all of which were coal bed methane wells. The total methane emissions rate from all sources measured was 5.3 ± 0.23 kg/hr, at a minimum.
Keywords: Natural gas; Greenhouse gases; Methane emissions;

Chemical and optical characteristics of atmospheric aerosols in Beijing during the Asia-Pacific Economic Cooperation China 2014 by Jun Tao; Jian Gao; Leiming Zhang; Han Wang; Xionghui Qiu; Zhisheng Zhang; Yunfei Wu; Fahe Chai; Shulan Wang (8-16).
To evaluate the effectiveness of regional pollution control measures for improving visibility imposed during the Asia-Pacific Economic Cooperation (APEC) period, day- and nighttime PM2.5 and PM10 samples were collected at an urban site in Beijing from October to November, 2014. PM2.5 and PM10 samples were subject to chemical analysis for major water-soluble ions, organic carbon (OC), element carbon (EC), and biomass burning tracers – anhydrosugar levoglucosan (LG). In addition, aerosol scattering coefficient (bsp) and aerosol absorption coefficient (bap) at dry condition were measured. PM2.5 mass concentration was 190 ± 125, 88 ± 60, 199 ± 142 μg m−3 during the pre-, during- and post-APEC period, respectively, while the concentration of the sum of (NH4)2SO4 and NH4NO3 was 75 ± 69, 19 ± 22 and 40 ± 46 μg m−3, respectively. The sum of (NH4)2SO4 and NH4NO3 accounted for 49 ± 24%, 19 ± 12% and 24 ± 12% of bext (the sum of bsp and bap) at ambient condition during the pre-, during- and post-APEC period, respectively, and the corresponding numbers are 39 ± 18%, 62 ± 8% and 61 ± 10% for the sum of OM and EC. Reduction of secondary inorganic aerosols played a key role in the “APEC blue”, especially under moisture conditions due to their hygroscopic properties. As a result, visibility was improved significantly during the APEC period with five out of the 12 days having a visibility higher than 20 km. Control of biomass burning, especially during the nighttime, was not performed well during the APEC period, which should be paid more attention in making future emission control measures.
Keywords: PM2.5; Chemical composition; Secondary inorganic aerosols; Biomass burning;

Aviation is a significant source of tropospheric ozone, which is a critical UV blocking agent, an indirect precursor to the formation of particulate matter, and a respiratory health hazard. To date, investigations of human health impacts related to aviation emissions have focused on particulate matter, and no global estimate yet exists of the combined health impact of aviation due to ozone, particulate matter and UV exposure changes. We use a coupled tropospheric-stratospheric chemical-transport model with a global aviation emissions inventory to estimate the total impact of aviation on all three risk factors. We find that surface ozone due to aviation emissions is maximized during hemispheric winter due to the greater wintertime chemical lifetime of ozone, but that a smaller enhancement of 0.5 ppbv occurs during summertime. This summertime increase results in an estimated 6,800 premature mortalities per year due to ozone exposure, over three times greater than previous estimates. During the winter maximum, interaction with high background NOx concentrations results in enhanced production of nitrate aerosol and increased annual average exposure to particulate matter. This ozone perturbation is shown to be the driving mechanism behind an additional 9,200 premature mortalities due to exposure to particulate matter. However, the increase in tropospheric ozone is also found to result in 400 fewer mortalities due to melanoma skin cancer in 2006. This is the first estimate of global melanoma mortality due to aviation, and the first estimate of skin cancer mortality impacts due to aviation using a global chemical transport model.
Keywords: Aviation; GEOS-Chem; Emissions; Health impacts; Ozone;

Transported vs. local contributions from secondary and biomass burning sources to PM2.5 by Bong Mann Kim; Jihoon Seo; Jin Young Kim; Ji Yi Lee; Yumi Kim (24-36).
The concentration of fine particulates in Seoul, Korea has been lowered over the past 10 years, as a result of the city's efforts in implementing environmental control measures. Yet, the particulate concentration level in Seoul remains high as compared to other urban areas globally. In order to further improve fine particulate air quality in the Korea region and design a more effective control strategy, enhanced understanding of the sources and contribution of fine particulates along with their chemical compositions is necessary. In turn, relative contributions from local and transported sources on Seoul need to be established, as this city is particularly influenced by sources from upwind geographic areas. In this study, PM2.5 monitoring was conducted in Seoul from October 2012 to September 2013. PM2.5 mass concentrations, ions, metals, organic carbon (OC), elemental carbon (EC), water soluble OC (WSOC), humic-like substances of carbon (HULIS-C), and 85 organic compounds were chemically analyzed. The multivariate receptor model SMP was applied to the PM2.5 data, which then identified nine sources and estimated their source compositions as well as source contributions. Prior studies have identified and quantified the transported and local sources. However, no prior studies have distinguished contributions of an individual source between transported contribution and locally produced contribution. We differentiated transported secondary and biomass burning sources from the locally produced secondary and biomass burning sources, which was supported with potential source contribution function (PSCF) analysis. Of the total secondary source contribution, 32% was attributed to transported secondary sources, and 68% was attributed to locally formed secondary sources. Meanwhile, the contribution from the transported biomass burning source was revealed as 59% of the total biomass burning contribution, which was 1.5 times higher than that of the local biomass burning source. Four-season average source contributions from the transported and the local sources were 28% and 72%, respectively.Display Omitted
Keywords: SMP receptor model; PM2.5 source apportionment; Long-range transport; Local sources; Secondary formation; Biomass burning source;

Indentifying the major air pollutants base on factor and cluster analysis, a case study in 74 Chinese cities by Jing Zhang; Lan-yue Zhang; Ming Du; Wei Zhang; Xin Huang; Ya-qi Zhang; Yue-yi Yang; Jian-min Zhang; Shi-huai Deng; Fei Shen; Yuan-wei Li; Hong Xiao (37-46).
This article investigated the major air pollutants and its spatial and seasonal distribution in 74 Chinese cities. Factor analysis and Cluster analysis are employed to indentify major factors of air pollutants. The following results are obtained (1) major factors are obtained in spring, summer, autumn, and winter. The first factor in spring includes NO2, PM10, CO, and PM2.5; the first factor in summer and autumn includes PM10, PM2.5, CO and SO2; in winter, the first factor includes NO2, PM10, PM2.5, and SO2. (2) In spring, cities of cluster 5 are the severest polluted by emission sources of SO2, CO, PM10, and PM2.5; the emission sources of O3 would significantly influence the air quality in cities of cluster 2; the emission sources of NO2 could significantly influence the air quality in cities of cluster 3 and cluster 5. (3) In summer, cities of cluster 5 are the severest polluted by automotive emissions and coal flue gas. Cities of cluster 1 are the lightest polluted. Cities of cluster 3 and cluster 2 are polluted by emission sources of SO2 and O3. (4) In Autumn, cities of cluster 3 and 4 are the severest polluted by the emission sources of SO2, CO, PM10, and PM2.5; the emission sources of NO2 would significantly influence the air quality in cities of cluster 5; the emission sources of O3 could significantly influence the air quality in cities of cluster 1 and cluster 4. (5) In winter, cities of cluster 5 are the severest polluted by the emission sources of SO2, CO, PM10, PM2.5, and CO; the emission sources of O3 could significantly influence the air quality in cities of cluster 1 and cluster 5.
Keywords: Air pollutants; Emission sources; Factor analysis; Cluster analysis;

This study employs a validated large-eddy simulation (LES) code with high tempo-spatial resolution to investigate the effect of a stably stratified roughness sublayer (RSL) on scalar transport within an urban street canyon. The major effect of stable stratification on the flow and turbulence inside the street canyon is that the flow slows down in both streamwise and vertical directions, a stagnant area near the street level emerges, and the vertical transport of momentum is weakened. Consequently, the transfer of heat between the street canyon and overlying atmosphere also gets weaker. The pollutant emitted from the street level ‘pools’ within the lower street canyon, and more pollutant accumulates within the street canyon with increasing stability. Under stable stratification, the dominant mechanism for pollutant transport within the street canyon has changed from ejections (flow carries high-concentration pollutant upward) to unorganized motions (flow carries high-concentration pollutant downward), which is responsible for the much lower dispersion efficiency under stable stratifications.
Keywords: Large-eddy simulation (LES); Urban street canyon; Pollutant dispersion; Stable stratification;

The importance of non-fossil sources in carbonaceous aerosols in a megacity of central China during the 2013 winter haze episode: A source apportionment constrained by radiocarbon and organic tracers by Junwen Liu; Jun Li; Matthias Vonwiller; Di Liu; Hairong Cheng; Kaijun Shen; Gary Salazar; Konstantinos Agrios; Yanlin Zhang; Quanfu He; Xiang Ding; Guangcai Zhong; Xinming Wang; Sönke Szidat; Gan Zhang (60-68).
To determine the causes of a severe haze episode in January 2013 in China, a source apportionment of different carbonaceous aerosols (CAs) was conducted in a megacity in central China (Wuhan, Hubei Province) by using the measurements of radiocarbon and molecular organic tracers. Non-fossil sources (e.g., domestic biofuel combustion and biogenic emissions) were found to be responsible for 62% ± 5% and 26% ± 8% of organic carbon (OC) and elemental carbon (EC) components by mass, respectively. Non-fossil sources contributed 57% ± 4% to total CAs in this large-scale haze event, whereas fossil-fuel sources were less dominant (43% ± 4%). The CAs were composed of secondary organic carbon (SOC; 46% ± 10%), primary fossil-fuel carbon (29% ± 4%) and primary biomass-burning carbon (25% ± 10%). Although SOC was formed mainly from non-fossil sources (70% ± 4%), the role of fossil precursors was substantial (30% ± 4%), much higher than at the global scale. Combined measurement of organic tracers and radiocarbon showed that most non-fossil SOC was probably derived from biomass burning during this long-lasting haze episode in central China.
Keywords: Central China; Organic carbon; Elemental carbon; Radiocarbon; Organic tracer;

Development of Land Use Regression models for particulate matter and associated components in a low air pollutant concentration airshed by Mila Dirgawati; Jane S. Heyworth; Amanda J. Wheeler; Kieran A. McCaul; David Blake; Jonathon Boeyen; Martin Cope; Bu Beng Yeap; Mark Nieuwenhuijsen; Bert Brunekreef; Andrea Hinwood (69-78).
Perth, Western Australia represents an area where pollutant concentrations are considered low compared with international locations. Land Use Regression (LUR) models for PM10, PM2.5 and PM2.5 Absorbance (PM2.5Abs) along with their elemental components: Fe, K, Mn, V, S, Zn and Si were developed for the Perth Metropolitan area in order to estimate air pollutant concentrations across Perth. The most important predictor for PM10 was green spaces. Heavy vehicle traffic load was found to be the strongest predictor for PM2.5Abs. Traffic variables were observed to be the important contributors for PM10 and PM2.5 elements in Perth, except for PM2.5 V which had distance to coast as the predominant predictor. Open green spaces explained more of the variability in the PM10 elements than for PM2.5 elements, and population density was more important for PM2.5 elements than for PM10 elements. The PM2.5 and PM2.5Abs LUR models explained 67% and 82% of the variance, respectively, but the PM10 model only explained 35% of the variance. The PM2.5 models for Mn, V, and Zn explained between 70% and 90% of the variability in concentrations. PM10 V, Si, K, S and Fe models explained between 53% and 71% of the variability in respective concentrations. Testing the models using leave one-out cross validation, hold out validation and cross-hold out validation supported the validity of LUR models for PM10, PM2.5 and PM2.5Abs and their corresponding elements in Metropolitan Perth despite the relatively low concentrations.
Keywords: Land use regression (LUR) model; Air pollution; Particulate matter; PM elements;

Terpene ozonolysis reactions can be a strong source of secondary organic aerosol (SOA) indoors. SOA formation can be parameterized and predicted using the aerosol mass fraction (AMF), also known as the SOA yield, which quantifies the mass ratio of generated SOA to oxidized terpene. Limonene is a monoterpene that is at sufficient concentrations such that it reacts meaningfully with ozone indoors. It has two unsaturated bonds, and the magnitude of the limonene ozonolysis AMF varies by a factor of ∼4 depending on whether one or both of its unsaturated bonds are ozonated, which depends on whether ozone is in excess compared to limonene as well as the available time for reactions indoors. Hence, this study developed a framework to predict the limonene AMF as a function of the ozone [O3] and limonene [lim] concentrations and the air exchange rate (AER, h−1), which is the inverse of the residence time. Empirical AMF data were used to calculate a mixing coefficient, β, that would yield a ‘resultant AMF’ as the combination of the AMFs due to ozonolysis of one or both of limonene's unsaturated bonds, within the volatility basis set (VBS) organic aerosol framework. Then, β was regressed against predictors of log10([O3]/[lim]) and AER (R2 = 0.74). The β increased as the log10([O3]/[lim]) increased and as AER decreased, having the physical meaning of driving the resultant AMF to the upper AMF condition when both unsaturated bonds of limonene are ozonated. Modeling demonstrates that using the correct resultant AMF to simulate SOA formation owing to limonene ozonolysis is crucial for accurate indoor prediction.
Keywords: Particle formation; SOA yield; Aerosol mass fraction; Indoor chemistry; Terpenes; Ozone;

Evaluation of an Odour Emission Factor (OEF) to estimate odour emissions from landfill surfaces by Federico Lucernoni; Federica Tapparo; Laura Capelli; Selena Sironi (87-99).
Emission factors are fundamental tools for air quality management. Odour Emission Factors (OEFs) can be developed in analogy with the emission factors defined for other chemical compounds, which relate the quantity of a pollutant released to the atmosphere to a given associated activity. Landfills typically represent a common source of odour complaint; for this reason, the development of specific OEFs allowing the estimation of odour emissions from this kind of source would be of great interest both for the landfill design and management. This study proposes an up-to-date methodology for the development of an OEF for the estimation of odour emissions from landfills, thereby focusing on the odour emissions related to the emissions of landfill gas (LFG) from the exhausted landfill surface. The proposed approach is an “indirect” approach based on the quantification of the LFG emissions from methane concentration measurements carried out on an Italian landfill. The Odour Emission Rate (OER) is then obtained by multiplying the emitted gas flow rate by the LFG odour concentration. The odour concentration of the LFG emitted through the landfill surface was estimated by means of an ad hoc correlation investigated between methane concentration and odour concentration. The OEF for the estimation of odour emissions from landfill surfaces was computed, considering the landfill surface as the activity index, as the product between the mean specific LFG flux emitted through the surface resulting from the experimental campaigns, equal to 0.39 l/m2/h, and its odour concentration, which was estimated to be equal to 105′000 eq. ouE/m3, thus giving an OEF of 0.011 ouE/m2/s. This value, which is considerably lower than those published in previous works, should be considered as an improved estimation based on the most recent developments of the research in the field of odour sampling on surface sources.
Keywords: Landfill gas; Odour concentration; Hood sampling; Area sources; Olfactometry; Methane concentration;

Spatial oscillation of the particle pollution in eastern China during winter: Implications for regional air quality and climate by Minghui Tao; Liangfu Chen; Rong Li; Lili Wang; Jun Wang; Zifeng Wang; Guiqian Tang; Jinhua Tao (100-110).
We provided a large-scale observational insight into spatial variations of the particle pollution in eastern China during winter based on recently extended air quality monitoring networks. Severe particle pollution with PM2.5 >150 μg/m3 prevailed in most areas of eastern China during December 2015, when red alert of haze pollution was released in many places. It was found that two distinct pollution processes existed in eastern China during winter. In the fringe areas such as Beijing and Shanghai in eastern China, most of air pollution events were characterized by abrupt peak values and short duration. By comparison, particle pollution in the interior exhibited obvious accumulation and decline processes with much higher PM2.5 concentration. Regional observations in ground networks show notable spatial oscillation of particle pollutants in eastern China, which is the main driver of the abrupt particle pollution in fringe areas. Despite common alternation of northerly and southerly airflows within planetary boundary layer (PBL), particle pollution in central part of eastern China was under the influence of regional accumulated pollutants due to lack of persistent strong winds. In addition, spatial oscillation of particle pollutants weakened with low PBL (<400–600 m). Our results demonstrate that spatial variations of particle pollutants in the central part of northern China play a significant role in regulating air quality in eastern China.
Keywords: Particle pollution; Oscillation; Regional transport; Satellite; Eastern China;

Estimating fugitive methane emissions from oil sands mining using extractive core samples by Matthew R. Johnson; Brian M. Crosland; James D. McEwen; Darcy B. Hager; Joshua R. Armitage; Mojgan Karimi-Golpayegani; David J. Picard (111-123).
Fugitive methane emissions from oil sands mining activities are a potentially important source of greenhouse gas emissions for which there are significant uncertainties and a lack of open data. This paper investigates the potential of a control-system approach to estimating fugitive methane emissions by analyzing releasable gas volumes in core samples extracted from undeveloped mine regions. Field experiments were performed by leveraging routine winter drilling activities that are a component of normal mine planning and development, and working in conjunction with an on-site drill crew using existing equipment. Core samples were extracted from two test holes, sealed at the surface, and transported for off-site lab analysis. Despite the challenges of the on-site sample collection and the limitations of the available drilling technology, notable quantities of residual methane (mean of 23.8 mgCH4/kg-core-sample (+41%/−35%) or 779 mgCH4/kg-bitumen (+69%/−34%) at 95% confidence) were measured in the collected core samples. If these factors are applied to the volumes of bitumen mined in Alberta in 2015, they imply fugitive methane emissions equivalent to 2.1 MtCO2e (as correlated with bitumen content) or 1.4 MtCO2e (as correlated with total mined material) evaluated on a 100-year time horizon. An additional ∼0.2 Mt of fugitive CO2 emissions could also be expected. Although additional measurements at a larger number of locations are warranted to determine whether these emissions should be considered as additive to, or inclusive of, current estimates based on flux chamber measurements at the mine face, these first-of-their-kind results demonstrate an intriguing alternate method for quantifying fugitive emissions from oil sands mining and extraction.Display Omitted
Keywords: Oil sands; Fugitive emissions; Methane; Core sample; Mining; Emission factor;

Source and formation characteristics of water-soluble organic carbon in the anthropogenic-influenced Yellow River Delta, North China by Zheng Zong; Xiaoping Wang; Chongguo Tian; Yingjun Chen; Guangxuan Han; Jun Li; Gan Zhang (124-132).
High intensity measurement of water-soluble organic carbon (WSOC) in PM2.5 was conducted at Yellow River Delta (YRD), North China, from 29 May to 1 July 2013. On average, concentration of WSOC was 3.09 ± 2.45 μg m−3 with a relative high WSOC/OC mass ratio (56.39%), implying organic aerosol in YRD was aged. WSOC concentration in day time was obviously higher than night time, which was mainly attributed to the decrease of source emission. While secondary formation of WSOC was strengthen in night time under stable atmospheric condition. The significant relationship between WSOC and SOC indicated WSOC was mostly secondary formation product. Furthermore, WSOC formation was enhanced at high level of acidity, providing direct evidence for the great impact of aerosol acidity on WSOC formation. WSOC correlated well with nss-K+, nss-SO4 2−, NO3 , Zn and Cu, suggesting a major part of observed WSOC and/or its precursors was of biomass burning and fossil fuel combustion origin. Moreover, vehicle emission may make great proportion in the fossil fuel combustion. Conditional probability function (CPF) analysis showed significant contribution of WSOC occurred when wind came from southerly (135–195°) and northwesterly (285, 345°) directions. In order to further confirm the source of WSOC, two merged samples representing the two directions were selected for radiocarbon (14C) measurement. 14C results demonstrated the average value of ƒc(WSOC) was 0.57 ± 0.01, implying biogenic and biomass burning (B&B) was the major source of WSOC. However, fossil fuel contribution could not be ignored in North China in summer.
Keywords: WSOC; Aerosol acidity; Source apportionment; 14C measurement;

A European aerosol phenomenology -4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe by F. Cavalli; A. Alastuey; H. Areskoug; D. Ceburnis; J. Čech; J. Genberg; R.M. Harrison; J.L. Jaffrezo; G. Kiss; P. Laj; N. Mihalopoulos; N. Perez; P. Quincey; J. Schwarz; K. Sellegri; G. Spindler; E. Swietlicki; C. Theodosi; K.E. Yttri; W. Aas; J.P. Putaud (133-145).
Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and more uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0.4 to 2.8 μg C/m3) and analytical discrepancies (between −50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 μg C/m3, and from 0.1 to 2 μg C/m3, respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15–0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites.
Keywords: Aerosol; Carbonaceous; PM; Phenomenology; Europe;

Accidental benzene release risk assessment in an urban area using an atmospheric dispersion model by Son C.H. Truong; Myong-In Lee; Ganghan Kim; Dongmin Kim; Jong-Hwa Park; Sung-Deuk Choi; Gi-Hyoug Cho (146-159).
This study applied the American Meteorological Society and Environmental Protection Agency Regulatory Model (AERMOD) to assess the risk caused by an accidental release and dispersion of the toxic chemical benzene in the vicinity of a highly populated urban area. The modeling domain encompasses the Korean megacity of Ulsan, which includes two national industrial complexes and is characterized by a complex coastal terrain. Multiple AERMOD simulations were conducted for an assumed emission scenario using background wind data from August between 2009 and 2013. The series of experiments produced the spatial accident probability patterns for different concentration levels during daytime and nighttime scenarios based on the corresponding dominant wind patterns. This study further quantifies the potential accident risk based on the number of affected individuals by combining the accident probability with the indoor and outdoor population estimates. The chemical gas dispersion characteristics depend on various local meteorological conditions, such as the land-sea breeze direction, which alternates between daytime and nighttime, and the atmospheric stability. The results reveal that benzene dispersion affects a much larger area during the nighttime owing to the presence of a nocturnal stable boundary layer with significant temperature stratification. The affected area is smaller during the daytime owing to decreased stability and enhanced vertical mixing in the boundary layer. The results include a high degree of uncertainty during the nighttime owing to weak wind speeds and the lack of a prevailing wind direction, which impact the vulnerable area. However, vulnerable areas are more effectively identified during the daytime, when more consistent meteorological conditions exist. However, the potential risk becomes much lower during the nighttime owing to a substantial reduction of the outdoor population.Display Omitted
Keywords: Benzene; Accident; AERMOD; Potential risk; Indoor; Outdoor; Population;

Non-growing season soil CO2 efflux patterns in five land-use types in northern China by Zhanlei Pan; Douglas A. Johnson; Zhijun Wei; Lei Ma; Yuping Rong (160-167).
Heavy grazing and unsuitable farming practices have led to grassland degradation in northern China. This study examined soil CO2 efflux (Fc) from five land-use types during the non-growing season on the southeastern edge of the Mongolian Plateau in China. The land-use types included three native vegetation steppes subjected to differing stocking rates [ungrazed (UG), moderately grazed (MG) and heavily grazed (HG)], a fertilized annual cropland (CL) and a perennial pasture (PP) used for haying and winter grazing. Values of Fc were measured at 3-day to 2-week intervals during the non-growing season in two contrasting hydrological years (2012-13 and 2013-14) using closed chambers. The Fc during 1 Oct. 2013 to 30 April 2014 averaged 475 mg C m−2 for all sites compared to a significantly (P < 0.05) lower Fc (102 mg C m−2) during 1 Oct. 2012 to 30 April 2013. The seasonal Fc patterns followed the same trend during the two non-growing seasons with greater Fc observed in the autumn and spring freeze-thaw periods compared to the winter permanently frozen period, which accounted for 4.8% of accumulated total non-growing season Fc. The heavily grazed site showed less soil CO2 efflux compared to UG, MG, PP and CL land-use types due to a larger reduction in gross primary productivity (GPP) compared to ecosystem respiration. Grazing reduced Fc by 23% for MG and 32% for HG compared to UG. Soil CO2 efflux from the PP land-use type, which was grazed during the non-growing season, was 23% greater than that from the UG and CL land-use types. Air temperature during the non-growing season was the main factor controlling soil CO2 efflux (R2 = 0.40, P < 0.001), although soil water content also played a role. Precipitation received during the growing season had a large legacy effect on Fc. Annual weather variation overshadowed the influence of land-use types on Fc.
Keywords: Grazed steppe; Leymus chinensis pasture; Annual cropland; Carbon dioxide; Inter-annual variability;

Estimating PM2.5-associated mortality increase in California due to the Volkswagen emission control defeat device by Tianyang Wang; Michael Jerrett; Peter Sinsheimer; Yifang Zhu (168-174).
The Volkswagen Group of America (VW) was found by the US Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) to have installed “defeat devices” and emit more oxides of nitrogen (NOx) than permitted under current EPA standards. In this paper, we quantify the hidden NOx emissions from this so-called VW scandal and the resulting public health impacts in California. The NOx emissions are calculated based on VW road test data and the CARB Emission Factors (EMFAC) model. Cumulative hidden NOx emissions from 2009 to 2015 were estimated to be over 3500 tons. Adult mortality changes were estimated based on ambient fine particulate matter (PM2.5) change due to secondary nitrate formation and the related concentration-response functions. We estimated that hidden NOx emissions from 2009 to 2015 have resulted in a total of 12 PM2.5-associated adult mortality increases in California. Most of the mortality increase happened in metropolitan areas, due to their high population and vehicle density.
Keywords: Mobile source; NOx; Nitrate; PM2.5; Mortality;

Polycyclic aromatic hydrocarbons (PAHs) were studied in dry and wet deposition samples collected at urban and suburban sites of Shanghai, China from April 2014 to April 2015. Average wet deposition fluxes of PAHs were higher than dry deposition (62.6 ± 41.5 vs. 26.9 ± 14.4 μg/m2/day). However, dry deposition removed more PAHs than wet deposition (69% vs. 31%) due to much shorter durations of wet deposition. The highest dry and wet deposition fluxes were in fall and winter, respectively. The highest amount of dry deposition was in fall and the highest of wet deposition was in summer. The contribution of wet deposition to total deposited PAHs in Shanghai, East China was higher than that in northern China and lower than that in southern China. The difference can be explained by both precipitation amount and removal efficiency (washout ratio). Average dry deposition velocity and washout ratio of particle-associated PAHs were 5.2 cm/s and 5.8 × 104, respectively. Four sources of deposited PAHs were unraveled by positive matrix factorization (PMF) model: traffic, coal combustion, coking and volatilization, contributing 28.7%, 24.6%, 23.7% and 23.0%, respectively. More contribution of traffic and less coal combustion and volatilization were found at urban than at suburban site. As the connection between aerosol and surface soil, deposition had a different PAH composition from those in the two sides, containing more low MW PAHs. That arose the concern that dry deposition velocity and particle washout ratio could be overestimated if coarse particulate matter was excluded from the calculation. Although deposition has been considered as the predominant pathway of PAHs to urban surface system, the PAH composition in street dust differed drastically from that in deposition. This indicated that other sources (e.g. traffic) in urban system could have a greater contribution to PAHs than it had been identified in deposition samples.
Keywords: PAH; Deposition; Seasonal perspective; Removal efficiency; Source apportionment;

The quantile regression (QR) method has been increasingly introduced to atmospheric environmental studies to explore the non-linear relationship between local meteorological conditions and ozone mixing ratios. In this study, we applied QR for the first time, together with multiple linear regression (MLR), to analyze the dominant meteorological parameters influencing the mean, 10th percentile, 90th percentile and 99th percentile of maximum daily 8-h average (MDA8) ozone concentrations in 2000–2015 in Hong Kong. The dominance analysis (DA) was used to assess the relative importance of meteorological variables in the regression models. Results showed that the MLR models worked better at suburban and rural sites than at urban sites, and worked better in winter than in summer. QR models performed better in summer for 99th and 90th percentiles and performed better in autumn and winter for 10th percentile. And QR models also performed better in suburban and rural areas for 10th percentile. The top 3 dominant variables associated with MDA8 ozone concentrations, changing with seasons and regions, were frequently associated with the six meteorological parameters: boundary layer height, humidity, wind direction, surface solar radiation, total cloud cover and sea level pressure. Temperature rarely became a significant variable in any season, which could partly explain the peak of monthly average ozone concentrations in October in Hong Kong. And we found the effect of solar radiation would be enhanced during extremely ozone pollution episodes (i.e., the 99th percentile). Finally, meteorological effects on MDA8 ozone had no significant changes before and after the 2010 Asian Games.
Keywords: Ozone; Meteorological variables; Quantile regression; Multiple linear regression; Dominance analysis;

Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013 by L. Li; J.Y. An; Y.Y. Shi; M. Zhou; R.S. Yan; C. Huang; H.L. Wang; S.R. Lou; Q. Wang; Q. Lu; J. Wu (194-207).
We applied ozone source apportionment technology (OSAT) with tagged tracers coupled within the Comprehensive Air Quality Model with Extensions (CAMx) to study the region and source category contribution to surface ozone in the Yangtze River Delta area in summer of 2013. Results indicate that the daytime ozone concentrations in the YRD region are influenced by emissions both locally, regionally and super-regionally. At urban Shanghai, Hangzhou and Suzhou receptors, the ozone formation is mainly VOC-limited, precursor emissions form Zhejiang province dominate their O3 concentrations. At the junction area among two provinces and Shanghai city, the ozone is usually influenced by all the three areas. The daily max O3 at the Dianshan Lake in July are contributed by Zhejiang (48.5%), Jiangsu (11.7%), Anhui (11.6%) and Shanghai (7.4%), long-range transport constitutes around 20.9%. At Chongming site, the BVOC emissions rate is higher than urban region. Regional contribution results show that Shanghai constitutes 15.6%, Jiangsu contributes 16.2% and Zhejiang accounts for 25.5% of the daily max O3. The analysis of the source category contribution to high ozone in the Yangtze River Delta region indicates that the most significant anthropogenic emission source sectors contributing to O3 pollution include industry, vehicle exhaust, although the effects vary with source sector and selected pollution episodes. Emissions of NO x and VOCs emitted from the fuel combustion of industrial boilers and kilns, together with VOCs emissions from industrial process contribute a lot to the high concentrations in urban Hangzhou, Suzhou and Shanghai. The contribution from regional elevated power plants cannot be neglected, especially to Dianshan Lake. Fugitive emissions of volatile pollution sources also have certain contribution to regional O3. These results indicate that the regional collaboration is of most importance to reduce ambient ozone pollution, particularly during high ozone episodes.
Keywords: Ozone; Source apportionment; Yangtze River Delta;

Ozone concentrations and damage for realistic future European climate and air quality scenarios by Carlijn Hendriks; Nicklas Forsell; Gregor Kiesewetter; Martijn Schaap; Wolfgang Schöpp (208-219).
Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2–5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global action to reduce air pollutant emissions is needed to make sure that ozone damage in Europe decreases towards the middle of this century.
Keywords: Ozone; Air quality; Energy scenario; Land use change; GAINS; GLOBIOM; LOTOS-EUROS; CTM;

In order to evaluate the positive and negative artifacts in the measurements of the water-soluble organic nitrogen (WSON) in the aerosols by filter sampling, comparative experiments between the filter sampling and denuder-filter sampling were conducted during both the warm and cold seasons. The results suggest that the traditional filter sampling underestimates the concentrations of the particulate WSON due to its volatilization loss, but this effect on the ratio of the WSON to the water-soluble total nitrogen (WSTN) was small probably because inorganic nitrogen species were also lost during the filter sampling. Approximately 32.5% of the WSON in the PM2.5 was estimated to be lost during the filter sampling. The denuder–filter sampling also demonstrated the existence of the WSON in the gas phase with approximately quarter concentrations of the WSON in the PM2.5. On the other hand, the filter sampling would overestimate the gaseous WSON concentration due to the loss of the WSON from the aerosol collection filter.
Keywords: Water-soluble organic nitrogen; Aerosol; Sampling artifact; Denuder; Gas phase;

Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil by Djacinto A. Monteiro dos Santos; Joel F. Brito; José Marcus Godoy; Paulo Artaxo (226-233).
The São Paulo Metropolitan Area (SPMA) is a megacity with about 20 million people and about 8 million vehicles, most of which are fueled with a significant fraction of ethanol - making it a unique case worldwide. This study presents organic and elemental carbon measurements using thermal-optical analysis from quartz filters collected in four sampling sites within the SPMA. Overall Organic Carbon (OC) concentration was comparable at all sites, where Street Canyon had the highest concentration (3.37 μg m−3) and Park site the lowest (2.65 μg m−3). Elemental Carbon (EC), emitted as result of incomplete combustion, has been significantly higher at the Street Canyon site (6.11 μg m−3) in contrast to all other three sites, ranging from 2.25 μg m−3 (Downtown) to 1.50 μg m-3 (Park). For all sampling sites, the average OC:EC ratio are found on the lower bound (<2) of what is usually observed for other megacities, highlighting the significant contribution of EC in Sao Paulo. At the Street Canyon site, average OC:EC ratio was 0.56, to our knowledge the lowest value ever observed for any urban site. An approach for apportionment between primary and secondary organic carbon based on primary OC:EC ratio was evaluated. The secondary OC was estimated to be 30–40% of total OC concentrations throughout the various sampling sites.The organic carbon dynamics has been further studied using each of the thermally-derived organic carbon fractions. Each of these has been studied regarding their correlation with EC and the correlation between different sites. The analyses have identified that the OC3 and OC4, i.e., the carbon fraction which evolves from the filter at temperatures above 450 °C, presents a regional behavior, with high correlation among all sites. Conversely, OC1, the first fraction to evolve, has depicted a more local characteristic. Furthermore, the fraction of OC which becomes char during the temperature increase under inert atmosphere (the Pyrolytic Carbon-PC) has been the only fraction not to present a significant correlation with EC. Since that EC is assumed to be a primary emission marker, it indicates that PC is not significant in traffic emissions. This study provided innovative insights of the organic aerosol content associated with air pollution dynamics in a megacity impacted by a unique vehicular fleet. It also shows the need of implementation of EURO VI technology and to improve mass transport systems such a metro and more bus corridors to allow better transport for 19 million people in the SPMA.
Keywords: Carbonaceous aerosol; Megacity; Urban air pollution;

In-vehicle nitrogen dioxide concentrations in road tunnels by Ashley N. Martin; Paul G. Boulter; Damon Roddis; Liza McDonough; Michael Patterson; Marina Rodriguez del Barco; Andrew Mattes; Luke D. Knibbs (234-248).
There is a lack of knowledge regarding in-vehicle concentrations of nitrogen dioxide (NO2) during transit through road tunnels in urban environments. Furthermore, previous studies have tended to involve a single vehicle and the range of in-vehicle NO2 concentrations that vehicle occupants may be exposed to is not well defined. This study describes simultaneous measurements of in-vehicle and outside-vehicle NO2 concentrations on a route through Sydney, Australia that included several major tunnels, minor tunnels and busy surface roads. Tests were conducted on nine passenger vehicles to assess how vehicle characteristics and ventilation settings affected in-vehicle NO2 concentrations and the in-vehicle-to-outside vehicle (I/O) concentration ratio. NO2 was measured directly using a cavity attenuated phase shift (CAPS) technique that gave a high temporal and spatial resolution. In the major tunnels, transit-average in-vehicle NO2 concentrations were lower than outside-vehicle concentrations for all vehicles with cabin air recirculation either on or off. However, markedly lower I/O ratios were obtained with recirculation on (0.08–0.36), suggesting that vehicle occupants can significantly lower their exposure to NO2 in tunnels by switching recirculation on. The highest mean I/O ratios for NO2 were measured in older vehicles (0.35–0.36), which is attributed to older vehicles having higher air exchange rates. The results from this study can be used to inform the design and operation of future road tunnels and modelling of personal exposure to NO2.
Keywords: Nitrogen dioxide; In-vehicle; Inside-to-outside ratio; Air exchange rate; Tunnel; Air quality;

Light absorption of organic aerosol from pyrolysis of corn stalk by Xinghua Li; Yanju Chen; Tami C. Bond (249-256).
Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV–vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (k OA ) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.Display Omitted
Keywords: Organic aerosol; Light absorption; Corn stalk; Pyrolysis; Spectral dependence;

Bioaerosol deposition on an air-conditioning cooling coil by Yan Wu; Ailu Chen; Irvan Luhung; Elliott T. Gall; Qingliang Cao; Victor Wei-Chung Chang; William W Nazaroff (257-265).
This study is concerned with the role of a fin-and-tube heat exchanger in modifying microbial indoor air quality. Specifically, depositional losses of ambient bioaerosols and particles onto dry (not cooled) and wet (cool) coil surfaces were measured for different airspeeds passing through the test coil. Total, bacterial and fungal DNA concentrations in condensate water produced by a wet coil were also quantified by means of fluorescent dsDNA-binding dye and qPCR assays. Results revealed that the deposition of bioaerosols and total particles is substantial on coil surfaces, especially when wet and cool. The average deposition fraction was 0.14 for total DNA, 0.18 for bacterial DNA and 0.22 for fungal DNA on the dry coil, increasing to 0.51 for total DNA, 0.50 for bacterial DNA and 0.68 for fungal DNA on the wet coil. Overall, as expected, deposition fractions increased with increasing particle size and increasing airspeed. Deposited DNA was removed from the cooling coil surfaces through the flow of condensing water at a rate comparable to the rate of direct deposition from air. A downward trend of bacterial and fungal DNA measured in condensate water over time provides suggestive evidence of biological growth on heat exchangers during nonoperational times of a ventilation system. This investigation provides new information about bioaerosol deposition onto a conventional fin-and-tube cooling coil, a potentially important factor influencing indoor exposure to microbial aerosols in air-conditioned buildings.
Keywords: Bioaerosols; DNA; Deposition; Cooling coil; Condensate water;

Levels of organic compounds in interiors (school, home, university and hospital) of Ouargla city, Algeria by A. Boudehane; A. Lounas; Y. Moussaoui; C. Balducci; A. Cecinato (266-273).
Indoor environments are affected by a number of organic contaminants, whose concentrations can exceed by orders of magnitude those found outdoors in external air. At this regard, polycyclic aromatic hydrocarbons (PAHs) deserve a special concern. PAHs occur in the air both in the gaseous and particulate forms; they are associated to fine aerosols and soil dust, and deposit on surfaces. Nonetheless, scarce information exists about the PAH pollution of indoor locations in Northern Africa. PAHs were first investigated in dust of interiors in Ouargla (Saharan Algeria), concurrently with n-alkanes and polar organics. Settled dust was collected from pre-cleaned surfaces (0.5 m2 each) at 7 internal locations in total from a school, the city hospital and university, and a home. Three sample series were collected 15, 30 days and random after the preliminary cleaning of surfaces. Contemporarily, organic compounds were collected at 15 locations of the target sites by deploying diffusive samplers over the whole study period to obtain molecular signatures of semi-volatile organic fraction. A consolidated procedure consisting of ultra-sonic bath extraction, semi-preparative column chromatography and gas chromatographic - mass spectrometric analysis was applied for chemical characterization of dusts. n-Alkanes ranged from 3.8 to 41 μg/m2 in dust and 0.17–2.42 μg/m3 in gas phase. PAHs concentrations were 17–89 ng/m2 and 45–182 ng/m3, respectively. Caffeine and nicotine were found both in dust (63–2,02 ng/m2 and 7–284 ng/m2, respectively) and as vapors in air (4–416 ng/m3 and 3.5–60 ng/m3). Two sites were affected by cannabinoids, while traces of nonylphenols occurred at all locations. External air was, on the average, more affected by PAHs than the interiors of school and hospital, but not of university. The compound concentrations show that Ouargla city is seriously polluted and requires actions to improve air quality.
Keywords: Indoor pollution; Dust; n-Alkanes; Polycyclic aromatic hydrocarbons; Polar organic compounds; Passive sampling;

The effects of nitrogen (N) fertilizer sources and tillage practices on greenhouse gas (GHG) emission have been well elucidated separately. However, it is still remained unclear regarding the combined effects of N fertilization and tillage practices on the global warming potential (GWP) and net ecosystem economic budget (NEEB) in paddy fields. In this paper, a 2-year field experiment was performed to investigate the effects of N fertilizer sources (N0, no N; IF, 100% N from chemical fertilizer; SRIF, 50% N from slow-release fertilizer and 50% N from chemical fertilizer; OF, 100% N from organic fertilizer; OFIF, 50% N from organic fertilizer and 50% N from chemical fertilizer) and tillage practices (CT, conventional intensive tillage; NT, no-tillage) on the emissions of methane (CH4) and nitrous oxide (N2O), GWP, greenhouse gas intensity (GHGI), and NEEB in paddy fields of central China. Compared with N0 treatment, IF, SRIF, OF and OFIF treatments greatly enhanced the cumulative seasonal CH4 emissions (by 54.7%, 41.7%, 51.1% and 66.0%, respectively) and N2O emissions (by 164.5%, 93.4%, 130.2% and 251.3%, respectively). NT treatment significantly decreased the GWP and GHGI compared with CT treatment. On the other hand, NT treatment significantly decreased CH4 emissions by 8.5–13.7%, but did not affect N2O emissions relative to CT treatment. Application of N fertilizers significantly increased GWP and GHGI. It was worth noting that the combined treatment of OFIF and NT resulted in the second-highest GWP and GHGI and the largest NEEB among all treatments. Therefore, our results suggest that OFIF combined with NT is an eco-friendly strategy to optimize the economic and environmental benefits of paddy fields in central China. Although the treatment of SRIF plus NT showed the lowest GWP and GHGI and the highest grain yield among all treatments, it led to the lowest NEEB due to its highest fertilizer cost. These results indicate that the government should provide appropriate ecological compensation for this practice, which has low GHG emissions and high rice yield.
Keywords: CH4; N2O; Net ecosystem economic budget; No–tillage; Organic fertilizer;

Urban air quality has become one of the main environmental issues worldwide and there is an increasing need for modelling tools able to accurately reproduce the complex atmospheric phenomena that determine pollutant concentrations within cities. Eulerian 3D mesoscale models can consistently describe a wide range of spatial scales. However, urban areas present features that are usually missed by land-surface and PBL modules commonly implemented in such models. The Weather Research and Forecasting model (WRF) incorporates urban parameterizations to take into account changes in albedo, roughness length and thermal properties imposed by buildings. In this study, a model configuration based on the multi-layer Building Effect Parameterization (BEP) scheme is tested over the city of Madrid with the primarily aim of understanding the effect that the use of this urban canopy model may have on routinely (annual) air quality modelling activities in this urban area using the Community Multiscale Air Quality (CMAQ) model. To do so, the results for the main meteorological variables (temperature, planetary boundary layer height and wind fields) are compared with those from the WRF reference configuration (based on the BULK simple scheme) that has been used in the past for practical applications in this urban area. Both model outputs are compared with observations to assess changes in model performance. It was found that the BEP-based configuration improved significantly wind speed results over built areas, with an annual average bias of −0.3 m s−1 in comparison with the 1.6 m s−1 yielded by the reference WRF run. Meteorological outputs from the two alternative configurations were used to feed the CMAQ model to assess the influence of this urban parameterization on air quality predictions. The effect was a clear improvement of the model performance regarding the most relevant pollutants, reducing NO2 underestimation to only 1.6 μg m−3. Model skills to reproduce O3 and PM2.5 ground-level concentration were also substantially improved. The results from this study clearly support the use of the BEP-based configuration for annual CMAQ runs despite the increase of the computational time and input data requirements. Seasonal and day-night time performance differences indicate that future efforts should be aimed at improving energy balances within BEP under stable conditions. Also, the development of methods to provide better land-use information and more detailed characteristics regarding building properties should be addressed to further improve the BEP urban canopy model.
Keywords: Air quality; Meteorological modelling; Urban parameterization; BEP; WRF; CMAQ;

In this paper, a splitting characteristic method is developed for solving general multi-component aerosol transports in atmosphere, which can efficiently compute the aerosol transports by using large time step sizes. The proposed characteristic finite difference method (C-FDM) can solve the multi-component aerosol distributions in high dimensional domains over large ranges of concentrations and for different aerosol types. The C-FDM is first tested to compute the moving of a Gaussian concentration hump. Comparing with the Runge-Kutta method (RKM), our C-FDM can use very large time step sizes. Using Δt = 0.1, the accuracy of our C-FDM is 10−4, but the RKM only gets the accuracy of 10−2 using a small Δt = 0.01 and the accuracy of 10−3 even using a much smaller Δt = 0.002. A simulation of sulfate transport in a varying wind field is then carried out by the splitting C-FDM, where the sulfate pollution is numerically showed expanding along the wind direction and the effects of the different time step sizes and different wind speeds are analyzed. Further, a realistic multi-component aerosol transport over an area in northeastern United States is studied. Concentrations of PM2.5 sulfate, ammonium, nitrate are high in the urban area, and low in the marine area, while sea salts of sodium and chloride mainly exist in the marine area. The normalized mean bias and the normalized mean error of the predicted PM2.5 concentrations are −6.5% and 24.1% compared to the observed data measured at monitor stations. The time series of numerical aerosol concentration distribution show that the strong winds can move the aerosol concentration peaks horizontally for a long distance, such as from the urban area to the rural area and from the marine area to the urban and rural area. Moreover, we also show the numerical time duration patterns of the aerosol concentration distributions due to the affections of the turbulence and the deposition removal. The developed splitting C-FDM algorithm can be applied to model spatial multi-component aerosol transport problems in large domains in atmosphere.
Keywords: Aerosol transport; Multi-component aerosols; Characteristic-FDM; Splitting; Efficiency; High accuracy;

Long range transport of nitrate in the low atmosphere over Northeast Asia by Jikang Wang; Jun Xu; Youjiang He; Yunbo Chen; Fan Meng (315-324).
In this study, the source-relationships were established for surface nitrate concentrations in Northeast Asia, using the Particulate Matter Source Apportionment Technology (PSAT) in the CAMx (a regional chemical transport model). Both of the local emissions and Chinese emissions were important among the sources of the particle nitrate in Japan and South Korea, accounting for 27.9–62.9% and 22.9–50.5% respectively. The local contributions of nitrate were 4–20% higher than the figures of sulfate, and this was caused by the different chemical processes and emissions involved. The seasonal variation of the nitrate concentration in East Asia led to different amounts of nitrate being attributed to long-range transport, and was higher in winter (>53%) than in summer (<41%). The interactions between ammonia/ammonium, sulfate and nitrate were also discussed. The distribution of degree of sulfate neutralization (DSN) and the adjusted gas ratio (AdjGR) in East Asia suggested that the particle nitrate concentration was most sensitive to changes in the total ammonia in most parts of Japan and some regions of South Korea. And that was different in most parts of East Asia, where there were large quantities of ammonia. The ammonia from local emissions were most likely responsible for some particulate nitrate being transformed from trans-boundary gaseous nitric, which signified that local emissions of ammonia increased the contribution of China to the nitrate concentrations in Japan and South Korea.
Keywords: Nitrate; Source appointment; East Asia;

A bias in the “mass-normalized” DTT response – An effect of non-linear concentration-response curves for copper and manganese by Jessica G. Charrier; Alexander S. McFall; Kennedy K-T. Vu; James Baroi; Catalina Olea; Alam Hasson; Cort Anastasio (325-334).
The dithiothreitol (DTT) assay is widely used to measure the oxidative potential of particulate matter. Results are typically presented in mass-normalized units (e.g., pmols DTT lost per minute per microgram PM) to allow for comparison among samples. Use of this unit assumes that the mass-normalized DTT response is constant and independent of the mass concentration of PM added to the DTT assay. However, based on previous work that identified non-linear DTT responses for copper and manganese, this basic assumption (that the mass-normalized DTT response is independent of the concentration of PM added to the assay) should not be true for samples where Cu and Mn contribute significantly to the DTT signal. To test this we measured the DTT response at multiple PM concentrations for eight ambient particulate samples collected at two locations in California. The results confirm that for samples with significant contributions from Cu and Mn, the mass-normalized DTT response can strongly depend on the concentration of PM added to the assay, varying by up to an order of magnitude for PM concentrations between 2 and 34 μg mL−1. This mass dependence confounds useful interpretation of DTT assay data in samples with significant contributions from Cu and Mn, requiring additional quality control steps to check for this bias. To minimize this problem, we discuss two methods to correct the mass-normalized DTT result and we apply those methods to our samples. We find that it is possible to correct the mass-normalized DTT result, although the correction methods have some drawbacks and add uncertainty to DTT analyses. More broadly, other DTT-active species might also have non-linear concentration-responses in the assay and cause a bias. In addition, the same problem of Cu- and Mn-mediated bias in mass-normalized DTT results might affect other measures of acellular redox activity in PM and needs to be addressed.
Keywords: Dithiothreitol; Oxidative potential; Particulate matter; Copper; Manganese; Quinones;

Dose-dependent intracellular reactive oxygen and nitrogen species (ROS/RNS) production from particulate matter exposure: comparison to oxidative potential and chemical composition by Wing Y. Tuet; Shierly Fok; Vishal Verma; Marlen S. Tagle Rodriguez; Anna Grosberg; Julie A. Champion; Nga L. Ng (335-344).
Elevated particulate matter (PM) concentrations have been associated with cardiopulmonary risks. In this study, alveolar macrophages and ventricular myocytes were exposed to PM extracts from 104 ambient filters collected in multiple rural and urban sites in the greater Atlanta area. PM-induced reactive oxygen/nitrogen species (ROS/RNS) were measured to investigate the effect of chemical composition and determine whether chemical assays are representative of cellular responses. For summer samples, the area under the ROS/RNS dose-response curve per volume of air (AUC volume ) was significantly correlated with dithiothreitol (DTT) activity, water-soluble organic carbon (WSOC), brown carbon, titanium, and iron, while a relatively flat response was observed for winter samples. EC 50 was also correlated with max response for all filters investigated, which suggests that certain PM constituents may be involved in cellular protective pathways. Although few metal correlations were observed, exposure to laboratory-prepared metal solutions induced ROS/RNS production, indicating that a lack of correlation does not necessarily translate to a lack of response. Collectively, these results suggest that complex interactions may occur between PM species. Furthermore, the strong correlation between organic species and ROS/RNS response highlights a need to understand the contribution of organic aerosols, especially photochemically driven secondary organic aerosols (SOA), to PM-induced health effects.Display Omitted
Keywords: Oxidative stress; Alveolar macrophage; Ventricular myocyte; Particulate matter; Chemical composition; Oxidative potential;

Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A., during the summer of 2012 by S. Marcela Loría-Salazar; Heather A. Holmes; W. Patrick Arnott; James C. Barnard; Hans Moosmüller (345-360).
Satellite characterization of local aerosol pollution is desirable because of the potential for broad spatial coverage, enabling transport studies of pollution from major sources, such as biomass burning events. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging over land because the underlying surface albedo may be heterogeneous in space and time. Ground-based sunphotometer measurements of AOD are unaffected by surface albedo and are crucial in enabling evaluation, testing, and further development of satellite instruments and retrieval algorithms. Columnar aerosol optical properties from ground-based sunphotometers (Cimel CE-318) as part of AERONET and MODIS aerosol retrievals from Aqua and Terra satellites were compared over semi-arid California and Nevada during the summer season of 2012. Sunphotometer measurements were used as a ‘ground truth’ to evaluate the current state of satellite retrievals in this spatiotemporal domain. Satellite retrieved (MODIS Collection 6) AOD showed the presence of wildfires in northern California during August. During the study period, the dark-target (DT) retrieval algorithm appears to overestimate AERONET AOD by an average factor of 3.85 in the entire study domain. AOD from the deep-blue (DB) algorithm overestimates AERONET AOD by an average factor of 1.64.Low AOD correlation was also found between AERONET, DT, and DB retrievals. Smoke from fires strengthened the aerosol signal, but MODIS versus AERONET AOD correlation hardly increased during fire events (r2∼0.1–0.2 during non-fire periods and r2∼0–0.31 during fire periods). Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD (NMB∼23%–154% for non-fire periods and NMB∼77%–196% for fire periods). Ångström Extinction Exponent (AEE) from DB for both Terra and Aqua did not correlate with AERONET observations. High surface reflectance and incorrect aerosol physical parametrizations may still be affecting the DT and DB MODIS AOD retrievals in the semi-arid western U.S.
Keywords: MODIS; Algorithms; Albedo; Deep-blue; Dark-target; Biomass burning;

Mismatch in aeroallergens and airborne grass pollen concentrations by M.P. Plaza; P. Alcázar; M.A. Hernández-Ceballos; C. Galán (361-369).
An accurate estimation of the allergen concentration in the atmosphere is essential for allergy sufferers. The major cause of pollinosis all over Europe is due to grass pollen and Phl p 5 has the highest rates of sensitization (>50%) in patients with grass pollen-induced allergy. However, recent research has shown that airborne pollen does not always offer a clear indicator of exposure to aeroallergens. This study aims to evaluate relations between airborne grass pollen and Phl p 5 concentrations in Córdoba (southern Spain) and to study how meteorological parameters influence these atmospheric records. Monitoring was carried out from 2012 to 2014. Hirst-type volumetric spore trap was used for pollen collection, following the protocol recommended by the Spanish Aerobiology Network (REA). Aeroallergen sampling was performed using a low-volume cyclone sampler, and allergenic particles were quantified by ELISA assay. Besides, the influence of main meteorological factors on local airborne pollen and allergen concentrations was surveyed. A significant correlation was observed between grass pollen and Phl p 5 allergen concentrations during the pollen season, but with some sporadic discrepancy episodes. The cumulative annual Pollen Index also varied considerably. A significant correlation has been obtained between airborne pollen and minimum temperature, relative humidity and precipitation, during the three studied years. However, there is no clear relationship between allergens and weather variables. Our findings suggest that the correlation between grass pollen and aeroallergen Phl p 5 concentrations varies from year-to-year probably related to a complex interplay of meteorological variables.
Keywords: Poaceae; Aeroallergens; Airborne pollen; Córdoba; South Spain; Meteorological parameters;

Urban and industrial contribution to trace elements in the atmosphere as measured in holm oak bark by Giuliana Drava; Daniele Brignole; Paolo Giordani; Vincenzo Minganti (370-375).
The concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by ICP-OES in samples of bark of the holm oak (Quercus ilex L.) collected from trees in different urban environments (residential and mixed residential/industrial).The use of tree bark as a bioindicator makes it easy to create maps that can provide detailed data on the levels and on the spatial distribution of each trace element.For most of the elements considered (As, Co, Fe, Mn, Ni, V and Zn), the concentrations in the industrial sites are about twice (from 1.9 to 2.8 times higher) of those in the residential area. Arsenic, Fe and Zn show the highest concentrations near a steel plant (operational until 2005), but for the other elements it is not possible to identify any localized source, as evident from the maps. In areas where urban pollution is summed up by the impact of industrial activities, the population is exposed to significantly higher amounts of some metals than people living in residential areas.
Keywords: Air quality; Atmospheric pollutants; Bark; Bioindicators; Metals;

Field performance of a semi-continuous monitor for ambient PM2.5 water-soluble inorganic ions and gases at a suburban site by Li-Hao Young; Chiao-Hsin Li; Ming-Yeng Lin; Bing-Fang Hwang; Hui-Tsung Hsu; Yu-Cheng Chen; Chau-Ren Jung; Kuan-Chi Chen; Dung-Hung Cheng; Ven-Shing Wang; Hung-Che Chiang; Perng-Jy Tsai (376-388).
To reduce sampling artifacts and to improve time-resolved measurements of inorganic aerosol system, a recently commercialized semi-continuous In-situ Gas and Aerosol Composition (IGAC) monitoring system was evaluated against a reference annular denuder system (ADS; denuder/two-stage filter pack) at a suburban site over a year, during which the average PM2.5 was 37.0 ± 24.8 μg/m3. A suite of eight ions SO4 2−, NO3 , Cl, NH4 +, Na+, K+, Ca2+ and Mg2+ and two gases SO2 and NH3 were the target species. In comparison to the reference ADS method, the IGAC performed well in measuring the major ions SO4 2−, NO3 and NH4 +, and the SO2. For those species, the linear slopes, intercepts and R2 values between the two methods all passed the performance evaluation criteria outlined by earlier similar studies. The performance of IGAC on Cl, Na+, K+ and NH3 was marginally acceptable, whereas Ca2+ and Mg2+ could not be properly evaluated due to the low concentrations (<0.2 μg/m3) and hence inadequate amount of sample size. The ionic balance of the hourly IGAC samples averaged very close to unity, as did the daily ADS samples, though the former was considerably more variable than the latter. The overall performance of the IGAC has been shown to be comparable to other similar monitors and its improvements are discussed.
Keywords: Fine particulate matter; Ionic species; Precursor gases; Semi-continuous; Annular denuder filter-pack; On-line analysis;

Spatial emission modelling for residential wood combustion in Denmark by Marlene S. Plejdrup; Ole-Kenneth Nielsen; Jørgen Brandt (389-396).
Residential wood combustion (RWC) is a major contributor to atmospheric pollution especially for particulate matter. Air pollution has significant impact on human health, and it is therefore important to know the human exposure. For this purpose, it is necessary with a detailed high resolution spatial distribution of emissions. In previous studies as well as in the model previously used in Denmark, the spatial resolution is limited, e.g. municipality or county level. Further, in many cases models are mainly relying on population density data as the spatial proxy for distributing the emissions. This paper describes the new Danish model for high resolution spatial distribution of emissions from RWC to air. The new spatial emission model is based on information regarding building type, and primary and supplementary heating installations from the Danish Building and Dwelling Register (BBR), which holds detailed data for all buildings in Denmark. The new model provides a much more accurate distribution of emissions than the previous model used in Denmark, as the resolution has been increased from municipality level to a 1 km × 1 km resolution, and the distribution key has been significantly improved so that it no longer puts an excessive weight on population density. The new model has been verified for the city of Copenhagen, where emissions estimated using both the previous and the new model have been compared to the emissions estimated in a case study. This comparison shows that the new model with the developed weighting factors (76 ton PM2.5) is in good agreement with the case study (95 ton PM2.5), and that the new model has improved the spatial emission distribution significantly compared to the previous model (284 ton PM2.5). Additionally, a sensitivity analysis was done to illustrate the impact of the weighting factors on the result, showing that the new model independently of the weighting factors chosen produce a more accurate result than the old model.
Keywords: Residential wood combustion; Spatial distribution; Gridded emissions; Emission inventory; GIS;

Yunlin County is located in the central part of western Taiwan with major emissions from the Mailiao industrial park, the Taichung Power Plants and heavy traffic. In order to understand the influence of meteorological conditions on PM2.5 concentrations in Yunlin County, we applied a two-stage cluster analysis method using the daily averaged surface winds from four air quality monitoring stations in Yunlin County to classify the weather pattern. The study period includes 1095 days from Jan 2013 to December 2015. The classification results show that the low PM2.5 concentration occurs when the synoptic weather in Taiwan is affected by the strong southwesterly monsoonal flow. The high PM2.5 concentration occurs when Taiwan is under the influence of weak synoptic weather conditions and continental high-pressure peripheral circulation. A high PM2.5 event was studied and the Weather Research and Forecasting (WRF) meteorological model was performed. The result indicated that due to being blocked by the Central Mountain Range, Yunlin County, which is situated on the leeside of the mountains, exhibits low wind speed and strong subsidence behavior that favors PM2.5 accumulation.
Keywords: PM2.5; Cluster analysis; Synoptic weather pattern; Stagnant wind and subsidence; WRF;

An increasing number of air pollution source apportionment studies in Europe and the United States have focused on the black carbon (BC) fraction of ambient particulate matter (PM) given its linkage with adverse public health and climate impacts. We conducted a critical review of European and US BC source apportionment studies published since 2003. Since elemental carbon (EC) has been used as a surrogate measure of BC, we also considered source apportionment studies of EC measurements. This review extends the knowledge presented in previous ambient PM source apportionment reviews because we focus on BC and EC and critically examine the differences between source apportionment results for different methods and source categories. We identified about 50 BC and EC source apportionment studies that have been conducted in either Europe or the US since 2003, finding a striking difference in the commonly used source apportionment methods between the two regions and variations in the assigned source categories. Using three dominant methodologies (radiocarbon, aethalometer, and macro-tracer methods) that only allow for BC to be broadly apportioned into either fossil fuel combustion or biomass burning source categories, European studies generally support fossil fuel combustion as the dominant ambient BC source, but also show significant biomass burning contributions, in particular in wintertime at non-urban locations. Among US studies where prevailing methods such as chemical mass balance (CMB) and positive matrix factorization (PMF) models have allowed for estimation of more refined source contributions, there are fewer findings showing the significance of biomass burning and variable findings on the relative proportion of BC attributed to diesel versus gasoline emissions. Overall, the available BC source apportionment studies provide useful information demonstrating the significance of both fossil fuel combustion and biomass burning BC emission sources in Europe and the US, although further studies are needed to evaluate the uncertainties and comparability of the methodologies.
Keywords: Black carbon; Elemental carbon; Source apportionment; Particulate matter; Combustion; Biomass;