Atmospheric Environment (v.44, #27)

Horizontal resolution of grid-based chemistry-transport models is limited to a few square kilometers which has been proved insufficient for assessing human exposure and health impact. We propose a general methodology, applicable on any kind of grid-based air-quality model, that combines subgrid scale information on emission and land-use data in order to disaggregate the grid-averaged emission flux into a set of source-specific components (subgrid-environments). Different subgrid concentrations are calculated inside each one of these environments providing a direct estimate of pollutant variability along with the ‘standard’ grid-averaged model output. The method was first validated over a controlled emissions case by comparing concentrations modeled in the subgrid-environments with concentrations modeled directly at higher model resolution and next over a real case-study, where subgrid concentrations were compared with monitor data from sites representing different types of urban environments (i.e. roads and residential blocks). It was shown that the method is capable to yield accurate estimates of small scale pollutant variability.
Keywords: Air-quality; Chemistry-transport models; Subgrid scale variability; Heterogeneous emissions;

The aim of this work was to study metals accumulation in stairway (inside the residential building) and sidewalk (outside the residential building) dust, and health risk of children due to dust exposure. The investigation included the: (a) spatial distributions of Hg, Pb, Cd, Zn and Cu in stairway and sidewalk dust, (b) source analysis of metals in stairway and sidewalk dust, and (c) assessment of the children health risks due to metals exposure from stairway and sidewalk dust. In the smelting district of Huludao, the maximum Hg, Pb, Cd, Zn and Cu contents in stairway dust were 5.324, 4594, 936.8, 48 253, 1377 mg kg−1, respectively, and were 144, 213, 8674, 760 and 69.5 times as high, respectively, as the background values in soil. A strong positive relationship was shown between the stairway and sidewalk dust for each metal (p < 0.01). The trends for Hg, Pb, Cd, Zn and Cu in the stairway and sidewalk dust were similar and with higher concentrations trending Huludao Zinc Plant (HZP). Atmospheric deposition due to metal smelting from HZP was the common source of heavy metals in the sidewalk and stairway dust. Vehicular traffic affected the metal accumulation in dust, but their contribution was slight comparing with atmospheric emission from HZP. Almost all hazard indexes (HIs) for metals due to stairway dust exposure in this study were lower than 1. The health risk for children was low if they would not play in the stairway. However, children were also experiencing the potential health risk from Cd and Pb exposure from sidewalk dust outside residential building, especially near HZP.
Keywords: Health risk; Stairway dust; Zinc smelting; Atmospheric deposition; Sidewalk dust;

Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation–emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores.
Keywords: Fogwater; Dissolved organic matter; Excitation–emission matrix (EEM) fluorescence; Fluorescence indices; Humic substances;

Carbonaceous matter and PBDEs on indoor/outdoor glass window surfaces in Guangzhou and Hong Kong, South China by Jun Li; Tian Lin; Su-Hong Pan; Yue Xu; Xiang Liu; Gan Zhang; Xiang-Dong Li (3254-3260).
Organic films, collected from indoor and outdoor window surfaces in Guangzhou and Hong Kong of South China, were analyzed to quantify their organic carbon (OC), elemental carbon (EC), and polybrominated diphenyl ethers (PBDEs) content. The highest concentrations of OC, EC, and BDE-209 were found in Guangzhou with values of 10 000 μg m−2, 2200 μg m−2, and 4000 ng m−2, respectively, and the highest concentration of Σ7PBDE (sum of BDE-28, -47, -99, -100, -153, -154 and -183) was found in Hong Kong with a value of 25 ng m−2. In most cases, the concentrations of PBDEs were higher in the exterior films than those in the interior films with BDE-209 as the predominant congener in both cities, suggesting that PBDEs mainly come from ambient environment, and deca-BDE accounts for major PBDE consumption. The growth rates of organic film on window surfaces were fast at the beginning, and reached a consistent level afterwards. The evolution rates ranged from 2.6 to 11 nm day−1 for “bulk film”, while from 0.06 to 0.92 nm day−1 for “pure film”. The concentrations of PBDEs on the window surfaces did not increase with the growth time, suggesting that the window surface may provide a good place for photo-degradation of PBDEs.
Keywords: Organic film; BDE-209; PBDEs; Pearl River Delta (PRD); Element carbon; Organic carbon;

History effect of light and temperature on monoterpenoid emissions from Fagus sylvatica L. by M. Demarcke; J.-F. Müller; N. Schoon; H. Van Langenhove; J. Dewulf; E. Joó; K. Steppe; M. Šimpraga; B. Heinesch; M. Aubinet; C. Amelynck (3261-3268).
Monoterpenoid emissions from Fagus sylvatica L. trees have been measured at light- and temperature-controlled conditions in a growth chamber, using Proton Transfer Reaction Mass Spectrometry (PTR-MS) and the dynamic branch enclosure technique. De novo synthesized monoterpenoid Standard Emission Factors, obtained by applying the G97 algorithm (), varied between 2 and 32 μg gDW −1 h−1 and showed a strong decline in late August and September, probably due to senescence.The response of monoterpenoid emissions to temperature variations at a constant daily light pattern could be well reproduced with a modified version of the MEGAN algorithm (), with a typical dependence on the average temperature over the past five days.The diurnal emissions at constant temperature showed a typical hysteretic behaviour, which could also be adequately described with the modified MEGAN algorithm by taking into account a dependence on the average light levels experienced by the trees during the past 10–13 h.The impact of the past light and temperature conditions on the monoterpenoid emissions from F. sylvatica L. was found to be much stronger than assumed in previous algorithms.Since our experiments were conducted under low light intensity, future studies should aim at confirming and completing the proposed algorithm updates in sunny conditions and natural environments.
Keywords: Monoterpene; Monoterpenoid; Fagus sylvatica L.; Emission algorithm; MEGAN; PTR-MS;

A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Keywords: Traffic interrupted; Emission model; Bus station; Exposure evaluation; Dispersion simulation;

Competition of coagulation sink and source rate: New particle formation in the Pearl River Delta of China by Youguo Gong; Min Hu; Yafang Cheng; Hang Su; Dingli Yue; Feng Liu; A. Wiedensohler; Zhibin Wang; H. Kalesse; Shang Liu; Zhijun Wu; Kaitao Xiao; Puchun Mi; Yuanhang Zhang (3278-3285).
The coagulation sink and its role in new particle formation are investigated based on data obtained during the PRIDE-PRD2004 campaign at Xinken of Pearl River Delta, China. Analysis of size distributions and mode contributions of the coagulation sink show that the observed higher load of accumulation mode particles impose a significant effect on the coagulation sink and result in higher coagulation sinks at Xinken despite of the lower total particle number compared with other areas. Hence it is concluded that the higher coagulation sink may depress the occurrence frequency of new particle formation events. The strategies targeting at controlling accumulation mode particles may have influences on the frequency of new particle formation events at this area. The factors affecting the coagulation sink are evaluated. The relatively lower ambient relative humidities may weaken the coagulation sink and facilitate the occurrence of new particle formation events during noontime, while the surmise of nucleation and growth involving organic matter may imply an actually higher coagulation sink than expected. These factors have a significant influence on the ultimate fate of the newly formed nuclei and new particle formation. A comparison of event and non-event days indicates that the coagulation sink is not the only decisive factor affecting new particle formation, other factors including the precursor vapors and photochemical activity are none the less important either. Competition of coagulation sink and high source rate leads to the occurrence of new particle formation events at Xinken.
Keywords: PRIDE-PRD2004; Coagulation sink; New particle formation; Particle number concentration;

For the first time we investigated the effect of solar irradiation upon the heterogeneous ozonation of adsorbed 3,4,5-trimethoxybenzaldehyde on solid surface. Light-induced heterogeneous reactions between gas-phase ozone and 3,4,5-trimethoxybenzaldehyde adsorbed on silica particles were performed and the consecutive reaction products were identified. At an ozone mixing ratio of 250 ppb, the loss of 3,4,5-trimethoxybenzaldehyde ranged from 1.0 · 10−6 s−1 in the dark to 2.9 · 10−5 s−1 under light irradiation. Such large enhancement of 29 times clearly shows the importance of light (λ > 300 nm) during the heterogeneous ozonolysis on organic coated particles.The reaction products identified in this study (3,4,5-trimethoxybenzoic acid, syringic acid, methyl 3,4,5-trimethoxybenzoate) absorb light in the spectral window (λ > 300 nm) which implies that light-induced heterogeneous ozone processing can have an influence on the aerosol surfaces by changing their physico-chemical properties.The main identified product of the heterogeneous reactions between gas-phase ozone and 3,4,5-trimethoxybenzaldehyde under dark conditions and in presence of light was 3,4,5-trimethoxybenzoic acid. For this reason we estimated the carbon yield of 3,4,5-trimethoxybenzoic acid. Carbon yields of 3,4,5-trimethoxybenzoic acid decreased with increasing ozone mixing ratio; from 40% at 250 ppb to 15% at ≥2.5 ppm under dark conditions. At ozone mixing ratio (250 ppb–1 ppm), carbon yields of 3,4,5-trimethoxybenzaldehyde are relatively higher in the experiment under dark condition than under simulated solar light.
Keywords: Heterogeneous chemistry; Photodegradation; Aromatic carbonyl compounds; Aerosol; Surface reaction; GC–MS;

Emission factors and exposures from ground-level pyrotechnics by Gerry Croteau; Russell Dills; Marc Beaudreau; Mac Davis (3295-3303).
Potential exposures from ground-level pyrotechnics were assessed by air monitoring and developing emission factors. Total particulate matter, copper and SO2 exposures exceeded occupational health guidelines at two outdoor performances using consumer pyrotechnics. Al, Ba, B, Bi, Mg, Sr, Zn, and aldehyde levels were elevated, but did not pose a health hazard based on occupational standards. Emission factors for total particulate matter, metals, inorganic ions, aldehydes, and polyaromatic hydrocarbons (PAHs) were determined for seven ground-supported pyrotechnics through air sampling in an airtight room after combustion. Particle generation ranged from 5 to 13% of the combusted mass. Emission factors (g Kg−1) for metals common to pyrotechnics were also high: K, 23–45; Mg, 1–7; Cu, 0.05–7; and Ba, 0.03–6. Pb emission rates of 1.6 and 2.7% of the combusted mass for two devices were noteworthy. A high correlation (r 2 ≥ 0.89) between metal concentrations in pyrotechnic compositions and emission factors were noted for Pb, Cr, Mg, Sb, and Bi, whereas low correlations (r 2 ≤ 0.1) were observed for Ba, Sr, Fe, and Zn. This may be due to the inherent heterogeneity of multi-effect pyrotechnics. The generation of inorganic nitrogen in both the particulate (NO2 , NO3 ) and gaseous (NO, NO2) forms varied widely (<0.1–1000 mg Kg−1). Aldehyde emission factors varied by two orders of magnitude even though the carbon source was carbohydrates and charcoal for all devices: formaldehyde (<7.0–82 mg Kg−1), acetaldehyde (43–210 mg Kg−1), and acrolein (1.9–12 mg Kg−1). Formation of lower molecular weight PAHs such as naphthalene and acenaphthylene were favored, with their emission factors being comparable to that from the combustion of household refuse and agricultural debris. Ba, Sr, Cu, and Pb had emission factors that could produce exposures exceeding occupational exposure guidelines. Sb and unalloyed Mg, which are banned from consumer fireworks in the US, were present in significant amounts.
Keywords: Consumer fireworks; Pyrotechnics; Exposure monitoring; Emission factor;

An alternative way to determine the size distribution of airborne particulate matter by Eleonora Cuccia; Vera Bernardoni; Dario Massabò; Paolo Prati; Gianluigi Valli; Roberta Vecchi (3304-3313).
We developed and tested a methodology to extract both the size-segregated source apportionment of atmospheric aerosol and the size distribution of each detected element. The experiment is based on the parallel use of a standard low-volume sampler to collect Particulate Matter (PM) and an Optical Particle Counter (OPC). The approach is complementary to size-segregated PM sampling, and it was tested versus a 12-stage cascade impactor. Samples were collected inside the urban area of Genoa (Italy) and their elemental composition was measured by Energy Dispersive-X Ray Fluorescence (ED-XRF). Positive Matrix Factorization (PMF) was applied to time series of elemental concentrations to identify major PM sources, and both PM mass concentration and size-segregated particle number concentration were apportioned. Source profiles and temporal trends extracted by PMF were analyzed together with the OPC data to obtain the size distribution for several elements. The new methodology proved to be reliable for the PM apportionment as well as in providing the elemental concentrations in PM10, PM2.5, and PM1 (PM with aerodynamic diameter, D ae < 10, 2.5, and 1 μm, respectively). The elemental size distributions are in good agreement with those obtained by the cascade impactor for several elements but some discrepancies, in particular for traffic emissions, are stressed and discussed in the text. The new methodology has two main advantages: it only requires standard semi-automatic sampling equipment and compositional analysis and it provides size-segregated information averaged over quite long periods (typically several months). This is particularly important since campaigns with cascade impactors are generally laborious and thus limited to short periods.
Keywords: Particulate matter; Size distribution; Optical counter; Positive matrix factorization;

Comparison of satellite observed tropospheric NO2 over India with model simulations by Varun Sheel; Shyam Lal; Andreas Richter; John P. Burrows (3314-3321).
Nitrogen dioxide (NO2) plays a key role in the chemistry of the atmosphere and is emitted mainly by combustion processes. These emissions have been increasing over India over the past few years due to rapid economic growth and yet there are very few systematic ground based observations of NO2 over this region. We thus take recourse to satellite data and compare tropospheric NO2 column abundances simulated by a chemical transport model, MOZART, with data from the Global Ozone Monitoring Experiment (GOME) for a few locations in India that have seen a rapid economic growth in the last decade. The model generally simulates higher columnar abundances of NO2 compared to GOME observations and does not reproduce the features of the observed seasonal behaviour. The combined uncertainties of the emission inventory and retrieval of the satellite data could be contributing factors to the discrepancies. It may be thus worthwhile to develop emission inventories for India at a higher resolution to include local level activity data. The ten year data (1996–2006) from GOME and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) show increasing trends for Indian cities where rapid industrial and vehicular traffic growth has been observed during this period.
Keywords: Tropospheric NO2; Chemical transport model; Satellite data;

A full year evaluation of the CALIOPE-EU air quality modeling system over Europe for 2004 by M.T. Pay; M. Piot; O. Jorba; S. Gassó; M. Gonçalves; S. Basart; D. Dabdub; P. Jiménez-Guerrero; J.M. Baldasano (3322-3342).
The CALIOPE-EU high-resolution air quality modeling system, namely WRF-ARW/HERMES-EMEP/CMAQ/BSC-DREAM8b, is developed and applied to Europe (12 km × 12 km, 1 h). The model performances are tested in terms of air quality levels and dynamics reproducibility on a yearly basis. The present work describes a quantitative evaluation of gas phase species (O3, NO2 and SO2) and particulate matter (PM2.5 and PM10) against ground-based measurements from the EMEP (European Monitoring and Evaluation Programme) network for the year 2004. The evaluation is based on statistics. Simulated O3 achieves satisfactory performances for both daily mean and daily maximum concentrations, especially in summer, with annual mean correlations of 0.66 and 0.69, respectively. Mean normalized errors are comprised within the recommendations proposed by the United States Environmental Protection Agency (US-EPA). The general trends and daily variations of primary pollutants (NO2 and SO2) are satisfactory. Daily mean concentrations of NO2 correlate well with observations (annual correlation r = 0.67) but tend to be underestimated. For SO2, mean concentrations are well simulated (mean bias = 0.5 μg m−3) with relatively high annual mean correlation (r = 0.60), although peaks are generally overestimated. The dynamics of PM2.5 and PM10 is well reproduced (0.49 < r < 0.62), but mean concentrations remain systematically underestimated. Deficiencies in particulate matter source characterization are discussed. Also, the spatially distributed statistics and the general patterns for each pollutant over Europe are examined. The model performances are compared with other European studies. While O3 statistics generally remain lower than those obtained by the other considered studies, statistics for NO2, SO2, PM2.5 and PM10 present higher scores than most models.
Keywords: Air quality; Model evaluation; Europe; High resolution; Ozone; Particulate matter;