Atmospheric Environment (v.43, #36)

This paper evaluates possible long-range source contributions to the PM10 profile of Istanbul, Turkey. A novel method for classifying PM10 episodic events resulting from long-range transport, as opposed to local ones, was implemented. Hourly PM10 mass concentrations from ten stations distributed throughout Istanbul during the year 2008 were used for this purpose. Hourly backward trajectories for the arrival of air masses to the center of Istanbul for the year 2008 were calculated using the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Significant episodes from these backward trajectories were selected and employed in Potential Source Contribution Function (PSCF) analysis to estimate the possible contribution of long-range PM10 transport (LRPMT) to observed PM10 concentrations. The PSCF results showed significant seasonal variations. Based on the results obtained, PM10 concentrations observed in Istanbul during summer and autumn are not heavily affected by LRPMT. Mediterranean countries, especially those of the central part of northern Africa (northern Algeria and Libya) are the most significant potential PM10 contributors to Istanbul's atmosphere during springtime. During winter, Balkan countries, including the Aegean part of Turkey, Greece, Bulgaria, Serbia, and Croatia, as well as northern Italy, eastern France, southern Germany, Austria and the eastern part of Russia, were the most important LRPMT source regions for high PSCF values.
Keywords: Long-range transport; Potential source contribution function (PSCF); Air pollution; Inhalable particles; Episode modeling; HYSPLIT model;

Although airborne pollutants in urban buses have been studied in many cities globally, long-distance buses running mainly on highways have not been addressed in this regard. This study investigates the levels of volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO2) and particulate matter (PM) in the long-distance buses in Taiwan. Analytical results indicate that pollutants levels in long-distance buses are generally lower than those in urban buses. This finding is attributable to the driving speed and patterns of long-distance buses, as well as the meteorological and geographical features of the highway surroundings. The levels of benzene, toluene, ethylbenzene and xylene (BTEX) found in bus cabins exceed the proposed indoor VOC guidelines for aromatic compounds, and are likely attributable to the interior trim in the cabins. The overall average CO level is 2.3 ppm, with higher average level on local streets (2.9 ppm) than on highways (2.2 ppm). The average CO2 level is 1493 ppm, which is higher than the guideline for non-industrial occupied settings. The average PM level in this study is lower than those in urban buses and IAQ guidelines set by Taiwan EPA. However, the average PM10 and PM2.5 is higher than the level set by WHO. Besides the probable causes mentioned above, fewer passenger movements and less particle re-suspension from bus floor might also cause the lower PM levels. Measurements of particle size distribution reveal that more than 75% of particles are in submicron and smaller sizes. These particles may come from the infiltration from the outdoor air. This study concludes that air exchange rates in long-distance buses should be increased in order to reduce CO2 levels. Future research on long-distance buses should focus on the emission of VOCs from brand new buses, and the sources of submicron particles in bus cabins.
Keywords: Long-distance bus; Highways; Volatile organic compounds (VOCs); Carbon monoxide (CO); Carbon dioxide (CO2); Particulate matter (PM);

An observational study of the HONO–NO2 coupling at an urban site in Guangzhou City, South China by Min Qin; Pinhua Xie; Hang Su; Jianwei Gu; Fumin Peng; Suwen Li; Limin Zeng; Jianguo Liu; Wenqing Liu; Yuanhang Zhang (5731-5742).
The temporal behavior of HONO and NO2 was investigated at an urban site in Guangzhou city, China, by means of a DOAS system during the Pearl River Delta 2006 intensive campaign from 10 to 24 July 2006. Within the whole measurement period, unexpected high HONO mixing ratios up to 2 ppb were observed even during the day. A nocturnal maximum concentration of about 8.43 ± 0.4 ppb was detected on the night of 24 July 2006. Combining the data simultaneously observed by different instruments, the coupling of HONO–NO2 and the possible formation sources of HONO are discussed. During the measurement period, concentration ratios of HONO to NO2 ranged from (0.03 ± 0.1) to (0.37 ± 0.09), which is significantly higher than previously reported values (0.01–0.1). Surprisingly, in most cases a strong daytime correlation between HONO and NO2 was found, contrary to previous observations in China. Aerosol was found to have a minor impact on HONO formation during the whole measurement period. Using a pseudo steady state approach for interpreting the nocturnal conversion of NO2 to HONO suggests a non-negligible role of the relative humidity for the heterogeneous HONO formation from NO2.
Keywords: Atmospheric chemistry; Air pollution; Heterogeneous conversion; Nitrous acid; DOAS;

Constituents of volatile organic compounds of evaporating essential oil by Hua-Hsien Chiu; Hsiu-Mei Chiang; Cho-Ching Lo; Ching-Yen Chen; Hung-Lung Chiang (5743-5749).
Essential oils containing aromatic compounds can affect air quality when used indoors. Five typical and popular essential oils—rose, lemon, rosemary, tea tree and lavender—were investigated in terms of composition, thermal characteristics, volatile organic compound (VOC) constituents, and emission factors. The activation energy was 6.3–8.6 kcal mol−1, the reaction order was in the range of 0.6–0.8, and the frequency factor was 0.01–0.24 min−1. Toluene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, n-undecane, p-diethylbenzene and m-diethylbenzene were the predominant VOCs of evaporating gas of essential oils at 40 °C. In addition, n-undecane, p-diethylbenzene, 1,2,4-trimethylbenzene, m-diethylbenzene, and 1,2,3-trimethylbenzene revealed high emission factors during the thermogravimetric (TG) analysis procedures. The sequence of the emission factors of 52 VOCs (137–173 mg g−1) was rose ≈ rosemary > tea tree ≈ lemon ≈ lavender. The VOC group fraction of the emission factor of aromatics was 62–78%, paraffins were 21–37% and olefins were less than 1.5% during the TG process. Some unhealthy VOCs such as benzene and toluene were measured at low temperature; they reveal the potential effect on indoor air quality and human health.
Keywords: Essential oil; Volatile organic compounds (VOCs); Emission factor;

Determinants of indoor and personal exposure to PM2.5 of indoor and outdoor origin during the RIOPA study by Qing Yu Meng; Dalia Spector; Steven Colome; Barbara Turpin (5750-5758).
Effects of physical/environmental factors on fine particle (PM2.5) exposure, outdoor-to-indoor transport and air exchange rate (AER) were examined. The fraction of ambient PM2.5 found indoors (FINF ) and the fraction to which people are exposed (α) modify personal exposure to ambient PM2.5. Because FINF , α, and AER are infrequently measured, some have used air conditioning (AC) as a modifier of ambient PM2.5 exposure. We found no single variable that was a good predictor of AER. About 50% and 40% of the variation in FINF and α, respectively, was explained by AER and other activity variables. AER alone explained 36% and 24% of the variations in FINF and α, respectively. Each other predictor, including Central AC Operation, accounted for less than 4% of the variation. This highlights the importance of AER measurements to predict FINF and α. Evidence presented suggests that outdoor temperature and home ventilation features affect particle losses as well as AER, and the effects differ.Total personal exposures to PM2.5 mass/species were reconstructed using personal activity and microenvironmental methods, and compared to direct personal measurement. Outdoor concentration was the dominant predictor of (partial R 2 = 30–70%) and the largest contributor to (20–90%) indoor and personal exposures for PM2.5 mass and most species. Several activities had a dramatic impact on personal PM2.5 mass/species exposures for the few study participants exposed to or engaged in them, including smoking and woodworking. Incorporating personal activities (in addition to outdoor PM2.5) improved the predictive power of the personal activity model for PM2.5 mass/species; more detailed information about personal activities and indoor sources is needed for further improvement (especially for Ca, K, OC). Adequate accounting for particle penetration and persistence indoors and for exposure to non-ambient sources could potentially increase the power of epidemiological analyses linking health effects to particulate exposures.
Keywords: Fine particle exposure; PM2.5; Air exchange rate; Particle infiltration; PM and health;

A diagnostic comparison of measured and model-predicted speciated VOC concentrations by Prakash Doraiswamy; Christian Hogrefe; Winston Hao; Robert F. Henry; Kevin Civerolo; Jia-Yeong Ku; Gopal Sistla; James J. Schwab; Kenneth L. Demerjian (5759-5770).
This study compares speciated model-predicted concentrations (i.e., mixing ratios) of volatile organic compounds (VOCs) with measurements from the Photochemical Assessment Monitoring Stations (PAMS) network at sites within the northeastern US during June–August of 2006. Measurements of total non-methane organic compounds (NMOC), ozone (O3), oxides of nitrogen (NOx) and reactive nitrogen species (NOy) are used for supporting analysis. The measured VOC species were grouped into the surrogate classes used by the Carbon Bond IV (CB4) chemical mechanism. It was found that the model typically over-predicted all the CB4 VOC species, except isoprene, which might be linked to overestimated emissions. Even with over-predictions in the CB4 VOC species, model performance for daily maximum O3 was typically within ±15%. Analysis at an urban site in NY, where both NMOC and NOx data were available, suggested that the reasonable ozone performance may be possibly due to compensating overestimated NOx concentrations, thus modulating the NMOC/NOx ratio to be in similar ranges as that of observations.
Keywords: CMAQ; VOC; Model performance; Non-methane organic compounds; Ozone; Carbon bond mechanism; Photochemical assessment monitoring stations;

Future land use and land cover influences on regional biogenic emissions and air quality in the United States by Jack Chen; Jeremy Avise; Alex Guenther; Christine Wiedinmyer; Eric Salathe; Robert B. Jackson; Brian Lamb (5771-5780).
A regional modeling system was applied with inputs from global climate and chemistry models to quantify the effects of global change on future biogenic emissions and their impacts on ozone and biogenic secondary organic aerosols (BSOA) in the US. Biogenic emissions in the future are influenced by projected changes in global and regional climates and by variations in future land use and land cover (LULC). The modeling system was applied for five summer months for the present-day case (1990–1999, Case 1) and three future cases covering 2045–2054. Individual future cases were: present-day LULC (Case 2); projected-future LULC (Case 3); and future LULC with designated regions of tree planting for carbon sequestration (Case 4). Results showed changing future meteorology with present-day LULC (Case 2) increased average isoprene and monoterpene emission rates by 26% and 20% due to higher temperature and solar insolation. However when LULC was changed together with climate (Case 3), predicted isoprene and monoterpene emissions decreased by 52% and 31%, respectively, due primarily to projected cropland expansion. The reduction was less, at 31% and 14% respectively, when future LULC changes were accompanied by regions of tree planting (Case 4). Despite the large decrease in biogenic emission, future average daily maximum 8-h (DM8H) ozone was found to increase between +8 ppbv and +10 ppbv due to high future anthropogenic emissions and global chemistry conditions. Among the future cases, changing LULC resulted in spatially varying future ozone differences of −5 ppbv to +5 ppbv when compared with present-day case. Future BSOA changed directly with the estimated monoterpene emissions. BSOA increased by 8% with current LULC (Case 2) but decreased by 45%–28% due to future LULC changes. Overall, the results demonstrated that on a regional basis, changes in LULC can offset temperature driven increases in biogenic emissions, and, thus, LULC projection is an important factor to consider in the study of future regional air quality.
Keywords: Biogenic emission; Global change; Air quality; Dispersion model; Land use; Land cover; Ozone; Secondary organic aerosol;

Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China by Shunsheng Huang; Jun Tu; Hongying Liu; Ming Hua; Qilin Liao; Jinshun Feng; Zhihua Weng; Guangming Huang (5781-5790).
The Yangtze River Delta (YRD), one of the fastest developing regions in China, was investigated for its trace element concentrations. Forty-three samples of atmospheric deposition were analyzed for their concentrations of thirteen elements, As, Cd, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, S and Zn. The results show that, in comparison with Chinese soil, the atmospheric deposition in the YRD generally has elevated trace element concentrations, except for Fe and Mn. The current atmospheric deposition of Cd, Cr, Cu, Pb and Zn in the YRD is significantly higher than the results from previous studies in other regions around the world. Four main sources of the trace elements were identified using statistical techniques including descriptive, correlation, and multivariate analyses, such as principal component analysis (PCA) and cluster analysis (CA). The four sources and associated cluster elements are: (1) road traffic emissions contributing As, Hg, Cu, Cd, Mo, S and Zn; (2) pyrometallurgical processes associated with Cr and Ni; (3) resuspension of soil particles contributing Fe and Mn; (4) coal combustion associated with Pb and Se. The four major sources were further verified by enrichment factor (EF) calculation and spatial analysis. Spatial distributions of four factor scores and EFs of elements show that high scores and EFs of trace metals (As, Hg, Cu, Cd, Mo, S and Zn) are mostly concentrated in the sites with high traffic conditions, and high scores of Fe and Mn are found at rural sites associated with high impact of soil particles resuspension, while Cr and Ni are higher in the area with long history of alloy machining.
Keywords: Trace elements; Principal component analysis; Enrichment factor; Yangtze River Delta;

This study examines perceived health effect risks from air pollution during the work-related commute by socio-demographic and travel mode variables.Population-representative survey data were collected by telephone from 745 adults from Queensland, Australia. Variables assessed included socio-demographics, usual work travel mode, commute perceptions, and perceived health effects associated with air pollution during the work-related commute.Approximately 45% of the sample perceived air pollution negatively affected health outcomes when commuting to/from work, yet only 13% recognised air pollution as a major barrier to walking or cycling to/from work. No relationships existed between usual travel mode to/from work and perceived health risks associated with air pollution. Those higher educated or living in major cities were more likely to recognise air pollution harmed their health during their work-related commute when compared to respective referent categories (p ≤ 0.05).Recognition of health risks from air pollution during the work-related commute was high, and awareness did not differ by travel mode. For the majority, air pollution was not a primary barrier for walking or cycling to/from work.
Keywords: Risk perception; Air pollution; Commute; Travel mode; Questionnaire;

Forecasting human exposure to atmospheric pollutants in Portugal – A modelling approach by C. Borrego; E. Sá; A. Monteiro; J. Ferreira; A.I. Miranda (5796-5806).
Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure.To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other indoors (leisure activities like shopping areas, gym, theatre/cinema and restaurants). The results show how this developed modelling system can be useful to anticipate air pollution episodes and to estimate their effects on human health on a long-term basis. The two metropolitan areas of Porto and Lisbon are identified as the most critical ones in terms of air pollution effects on human health over Portugal in a long-term as well as in a short-term perspective. The coexistence of high concentration values and high population density is the key factor for these stressed areas. Regarding the 50% emission reduction scenario, the model results are significantly different for both pollutants: there is a small overall reduction in the individual exposure values of PM10 (<10 μg m−3 h), but for O3, in contrast, there is an extended area where exposure values increase with emission reduction. This detailed knowledge is a prerequisite for the development of effective policies to reduce the foreseen adverse impact of air pollution on human health and to act on time.
Keywords: Air quality forecast modelling; Human exposure modelling; Gaseous and particulate air pollutants; Human health;

A new urban parameterization for a fast-running dispersion prediction modeling system suitable for emergency response situations is introduced. The parameterization represents the urban convective boundary layer in the dispersion prediction system developed by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory. The performance of the modeling system is tested with data collected during the field campaign Joint Urban 2003 (JU03), held in July 2003 in Oklahoma City, Oklahoma. Tests were performed using data from three intense operating periods held during daytime slightly unstable to unstable conditions. The system was run in operational mode using the meteorological data that would be available operationally at NARAC to test its effectiveness in emergency response conditions. The new parameterization considerably improves the performance of the original modeling system, by producing a better degree of pattern of correspondence between predictions and observations (as measured by Taylor diagrams), considerably reducing bias, and better capturing directional effects resulting in plume predictions whose shape and size better resemble the observations (via the measure of effectiveness). Furthermore, the new parameterization shows similar skills to urban modeling systems of similar or greater complexity. The parameterization performs the best at the three JU03 sensor arcs (1, 2, and 4 km downwind the release points), with fractional bias values ranging from 0.13 to 0.4, correlation values from 0.45 to 0.71, and centered root-mean-square error being reduced more than 50% in most cases. The urban parameterization has been tested with grid increments of 125, 250, 500 and 1000 m, performing best at 250 and 500 m. Finally, it has been found that representing the point source by a Gaussian distribution with an initial spread of particles leads to a better representation of the initial spread induced by near-source buildings, resulting in lower bias and improved correlation in downtown Oklahoma City.
Keywords: Urban parameterization; Dispersion modeling; Emergency response;

Historical and projected emissions of major halocarbons in China by Dan Wan; Jianhua Xu; Jianbo Zhang; Xuanchang Tong; Jianxin Hu (5822-5829).
The halocarbons studied here are chemicals controlled in the 1987 Montreal Protocol on Substances that Deplete the Ozone Layer and its Amendments, which have both high ozone depleting potentials (ODPs) and high global warming potentials (GWPs). These halocarbons are mainly used for refrigeration, air-conditioning, foam blowing, tobacco expansion, aerosol propulsion, solvent cleaning, and fire fighting. China ratified the Montreal Protocol in 1991 and has been implementing the phase-out of halocarbons since then. In this paper, the emissions of halocarbons from China were estimated for 1995–2024 based on the historical consumption, the country program for complying with the Montreal Protocol, and the sector plans for phasing out halocarbons. The results show that China's compliance with the Montreal Protocol contributes greatly to both ozone protection and climate protection.
Keywords: Halocarbons; Chlorofluorocarbons (CFCs); Halons; Hydrochlorofluorocarbons (HCFCs); Emissions; China;

Estimation of road traffic emission factors from a long term tracer study by Luis Carlos Belalcazar; Oliver Fuhrer; Minh Dung Ho; Erika Zarate; Alain Clappier (5830-5837).
Road traffic emissions, one of the largest source categories in megacity inventories, are highly uncertain. It is essential to develop methodologies to reduce these uncertainties to manage air quality more effectively. In this paper, we propose a methodology to estimate road traffic emission factors (EFs) from a tracer experiment and from roadside pollutants measurements. We emitted continuously during about 300 non-consecutive hours a passive tracer from a finite line source placed on one site of an urban street. At the same time, we measured continuously the resulting tracer concentrations at the other side of the street with a portable on-line gas chromatograph. We used n-propane contained in commercial liquid petroleum gas (LPG) as a passive tracer. Propane offers several advantages to traditional tracers (SF6, N2O, CFCs): low price, easily available, non-reactive, negligible global warming potential, and easy to detect with commercial on-line gas chromatographs.The tracer experiment was carried out from January to March 2007 in a busy street of Ho Chi Minh City (Vietnam). Traffic volume, weather information and pollutant concentrations were also measured at the measurement site. We used the results of the tracer experiment to calculate the dilution factors and afterwards we used these dilution factors, the traffic counts and the pollutant concentrations to estimate the EFs. The proposed method assumes that the finite emission line represents the emission produced by traffic in the full area of the street and therefore there is an error associated to this assumption. We use the Computational Fluids Dynamics (CFD) model MISKAM to calculate this error and to correct the HCMC EFs. EFs for 15 volatile organic compounds (VOCs) and NO are reported here. A comparison with available studies reveals that most of the EFs estimated here are within the range of EFs reported in other studies.
Keywords: Real-world emissions; Street canyon; On-line gas chromatography; Roadside measurements; Tracer experiment; Ho Chi Minh City (Vietnam);

Estimating PM2.5 over southern Sweden using space-borne optical measurements by P. Glantz; Alexander Kokhanovsky; W. von Hoyningen-Huene; C. Johansson (5838-5846).
In the present study Bremen aerosol retrieval (BAER) columnar aerosol optical thickness (AOT) data, according to moderate resolution imaging spectroradiometer (MODIS) and medium resolution imaging sensor (MERIS) level 1 calibrated satellite data, have been compared with AOT data obtained with the MODIS and MERIS retrieval algorithms (NASA and ESA, respectively) and by AErosol RObotic NETwork (AERONET). Relatively good agreement is found between these different instruments and algorithms. The R 2 and relative RMSD were 0.86 and 31% for MODIS when comparing with AERONET and 0.92 and 21% for MERIS. The aerosols investigated were influenced by low relative humidity. During this period, a relatively large range of aerosol loadings were detected; from continental background aerosol to particles emitted from agricultural fires. In this study, empirical relationships between BAER columnar AOT and ground-measured PM2.5 have been estimated. Linear relationships, with R 2 values of 0.58 and 0.59, were obtained according to MERIS and MODIS data, respectively. The slopes of the regression of AOT versus PM2.5 are lower than previous studies, but this could easily be explained by considering the effect of hygroscopic growth. The present AOT–PM2.5 relationship has been applied on MERIS full resolution data over the urban area of Stockholm and the results have been compared with particle mass concentrations from dispersion model calculations. It seems that the satellite data with the 300 m resolution can resolve the expected increased concentrations due to emissions along the main highways close to the city. Significant uncertainties in the spatial distribution of PM2.5 across land/ocean boundaries were particularly evident when analyzing the high resolution satellite data.
Keywords: AOT; Remote sensing; Particulate matter; Polluted aerosol;

Simultaneous observations of boundary-layer aerosol layers with CL31 ceilometer and 1064/532 nm lidar by I.G. McKendry; D. van der Kamp; K.B. Strawbridge; A. Christen; B. Crawford (5847-5852).
Aerosol backscatter measurements from a Vaisala CL31 ceilometer are compared directly with a co-located 532/1064 nm lidar in order to validate the CL31 for remote sensing of vertical aerosol structure. The cases examined include a significant aerosol event (biomass burning), which by virtue of its vertical extent, provides a robust measure of the vertical range of the ceilometer for aerosol applications. A second case is presented when the instruments were separated in order to illustrate the utility of a network of such instruments for elucidating spatial patterns in aerosol distribution and the advection of elevated pollutant layers. When co-located, the instruments show remarkable agreement and indicate that the CL31 can detect aerosol layers up to 3000 m AGL in ideal conditions (at night and with high aerosol concentrations as found in biomass burning or dust plumes). When separated, multiple instruments provide an opportunity to examine advection of pollutant layers as well as their evolution. This suggests that installation of a ceilometer network would provide a cost-effective means of examining three-dimensional aspects of regional air quality as well as distinguishing between regional and local sources of pollution
Keywords: Lidar; Ceilometer; Boundary-layer aerosol; Aerosol layers;