BBA - Molecular Basis of Disease (v.1862, #8)

The impact of altered carnitine availability on acylcarnitine metabolism, energy expenditure and glucose tolerance in diet-induced obese mice by Marieke G. Schooneman; Riekelt H. Houtkooper; Carla E.M. Hollak; Ronald J.A. Wanders; Frédéric M. Vaz; Maarten R. Soeters; Sander M. Houten (1375-1382).
Acylcarnitines are fatty acid oxidation (FAO) intermediates, which have been implicated in diet-induced insulin resistance. Elevated acylcarnitine levels are found in obese, insulin resistant humans and rodents, and coincide with lower free carnitine. We hypothesized that increasing free carnitine levels by administration of the carnitine precursor γ-butyrobetaine (γBB) could facilitate FAO, thereby improving insulin sensitivity.C57BL/6N mice were fed with a high fat or chow diet with or without γBB supplementation (n = 10 per group). After 8 weeks of diet, indirect calorimetry, glucose tolerance and insulin sensitivity tests were performed. AC profiles and carnitine biosynthesis intermediates were analyzed in plasma and tissues by tandem mass spectrometry (MS) and liquid chromatography tandem MS.γBB supplementation did not facilitate FAO, was unable to curb bodyweight and did not prevent impaired glucose homeostasis in the HFD fed mice in spite of marked alterations in the acylcarnitine profiles in plasma and liver. Remarkably, γBB did not affect the acylcarnitine profile in other tissues, most notably muscle. Administration of a bolus acetylcarnitine also caused significant changes in plasma and liver, but not in muscle acylcarnitine profiles, again without effect on glucose tolerance.Altogether, increasing carnitine availability affects acylcarnitine profiles in plasma and liver but does not modulate glucose tolerance or insulin sensitivity. This may be due to the lack of an effect on muscle acylcarnitine profiles, as muscle tissue is an important contributor to whole body insulin sensitivity. These results warrant caution on making associations between plasma acylcarnitine levels and insulin resistance.
Keywords: Insulin resistance; Fatty acid oxidation; Lipotoxicity;

Schizophrenia susceptibility gene product dysbindin-1 regulates the homeostasis of cyclin D1 by Hidenori Ito; Rika Morishita; Koh-ichi Nagata (1383-1391).
Dysbindin-1 (dystrobrevin binding protein-1, DTNBP1) is now widely accepted as a potential schizophrenia susceptibility gene and accumulating evidence indicates its functions in the neural development. In this study, we tried to identify new binding partners for dysbindin-1 to clarify the novel function of this molecule. When consulted with BioGRID protein interaction database, cyclin D3 was found to be a possible binding partner for dysbindin-1. We then examined the interaction between various dysbindin-1 isoforms (dysbindin-1A, -1B and -1C) and all three D-type cyclins (cyclin D1, D2, and D3) by immunoprecipitation with the COS7 cell expression system, and found that dysbindin-1A preferentially interacts with cyclin D1. The mode of interaction between these molecules was considered as direct binding since recombinant dysbindin-1A and cyclin D1 formed a complex in vitro. Mapping analyses revealed that the C-terminal region of dysbindin-1A binds to the C-terminal of cyclin D1. Consistent with the results of the biochemical analyses, endogenous dysbindin-1was partially colocalized with cyclin D1 in NIH3T3 fibroblast cells and in neuronal stem and/or progenitor cells in embryonic mouse brain. While co-expression of dysbindin-1A with cyclin D1 changed the localization of the latter from the nucleus to cytosol, cyclin D1-binding partner CDK4 inhibited the dysbindin–cyclin D1 interaction. Meanwhile, depletion of endogenous dysbindin-1A increased cyclin D1 expression. These results indicate that dysbindin-1A may control the cyclin D1 function spatiotemporally and might contribute to better understanding of the pathophysiology of dysbindin-1-associated disorders.
Keywords: Dysbindin-1; Cyclin D1; Schizophrenia;

Review: adiponectin in retinopathy by Zhongjie Fu; Yan Gong; Chatarina Löfqvist; Ann Hellström; Lois E.H. Smith (1392-1400).
Neovascular eye diseases are a major cause of blindness including retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration in which new vessel formation is driven by hypoxia or metabolic abnormalities affecting the fuel supply. White-adipose-tissue derived adipokines such as adiponectin modulate metabolic responses. Increasing evidence shows that lack of adiponectin may result in retinal neovascularization. Activation of the adiponectin pathway may in turn restore energy metabolism, to suppress the drive for compensatory but ultimately pathological neovessels of retinopathy. In this review, we will summarize our current knowledge of the role of adiponectin in eye diseases of premature infants, diabetic patients as well as the elderly. Further investigations in this field are likely to lead to new preventative approaches for these diseases.

Disrupted dynamics of F-actin and insulin granule fusion in INS-1 832/13 beta-cells exposed to glucotoxicity: partial restoration by glucagon-like peptide 1 by Aurore Quinault; Blandine Gausseres; Danielle Bailbe; Nella Chebbah; Bernard Portha; Jamileh Movassat; Cecile Tourrel-Cuzin (1401-1411).
Actin dynamics in pancreatic β-cells is involved in insulin exocytosis but the molecular mechanisms of this dynamics and its role in biphasic insulin secretion in pancreatic β-cells is largely unknown. Moreover, the impact of a glucotoxic environment on the sub-cortical actin network dynamics is poorly studied. In this study, we investigate the behavior of insulin granules and the subcortical actin network dynamics in INS-1 832/13 β-cells submitted to a normal or glucotoxic environment. Our results show that glucose stimulation leads to a reorganization of the subcortical actin network with a rupture of its interactions with t-SNARE proteins (Syntaxin 1A and SNAP-25), promoting insulin secretion in INS-1 832/13 β-cells. Prolonged exposure of INS-1 832/13 β-cells to high-glucose levels (glucotoxicity) leads to the densification of the cortical actin network, which prevents its reorganization under acute glucose, and diminishes the glucose-stimulated insulin secretion, as shown by the decreased number of fusion events. The most interesting in our results is the partial restoration by GLP-1 of the insulin secretion ability from high-glucose treated INS-1 832/13 cells. This improved insulin exocytosis is associated with partial restored actin dynamics and fusion events during the two phases of the secretion, with a preferential involvement of Epac2 signaling in the first phase and a rather involvement of PKA signaling in the second phase of insulin exocytosis. All these data provide some new insights into the mechanism by which current therapeutics may be improving insulin secretion.
Keywords: Exocytosis; Sub-cortical F-actin; Insulin granules; Glucotoxicity; Glucagon-like peptide-1; ß-cells;

Investigation of salicylate hepatic responses in comparison with chemical analogues of the drug by Amy R. Cameron; Lisa Logie; Kashyap Patel; Sandra Bacon; Calum Forteath; Jean Harthill; Adam Roberts; Calum Sutherland; Derek Stewart; Benoit Viollet; Kei Sakamoto; Gordon McDougall; Marc Foretz; Graham Rena (1412-1422).
Anti-hyperglycaemic effects of the hydroxybenzoic acid salicylate might stem from effects of the drug on mitochondrial uncoupling, activation of AMP-activated protein kinase, and inhibition of NF-κB signalling. Here, we have gauged the contribution of these effects to control of hepatocyte glucose production, comparing salicylate with inactive hydroxybenzoic acid analogues of the drug. In rat H4IIE hepatoma cells, salicylate was the only drug tested that activated AMPK. Salicylate also reduced mTOR signalling, but this property was observed widely among the analogues. In a sub-panel of analogues, salicylate alone reduced promoter activity of the key gluconeogenic enzyme glucose 6-phosphatase and suppressed basal glucose production in mouse primary hepatocytes. Both salicylate and 2,6 dihydroxybenzoic acid suppressed TNFα-induced IκB degradation, and in genetic knockout experiments, we found that the effect of salicylate on IκB degradation was AMPK-independent. Previous data also identified AMPK-independent regulation of glucose but we found that direct inhibition of neither NF-κB nor mTOR signalling suppressed glucose production, suggesting that other factors besides these cell signalling pathways may need to be considered to account for this response to salicylate. We found, for example, that H4IIE cells were exquisitely sensitive to uncoupling with modest doses of salicylate, which occurred on a similar time course to another anti-hyperglycaemic uncoupling agent 2,4-dinitrophenol, while there was no discernible effect at all of two salicylate analogues which are not anti-hyperglycaemic. This finding supports much earlier literature suggesting that salicylates exert anti-hyperglycaemic effects at least in part through uncoupling.
Keywords: Salicylate; AMPK; mTOR signalling; NF-κB signalling; Gluconeogenesis;

Protein degradation in a LAMP-2-deficient B-lymphoblastoid cell line from a patient with Danon disease by Raul Sánchez-Lanzas; Beatriz Alvarez-Castelao; Teresa Bermejo; Teresa Ayuso; Teresa Tuñón; José G. Castaño (1423-1432).
Danon disease, a condition characterized by cardiomyopathy, myopathy, and intellectual disability, is caused by mutations in the LAMP-2 gene. Lamp-2A protein, generated by alternative splicing from the Lamp-2 pre-mRNA, is reported to be the lysosomal membrane receptor essential for the chaperone-mediated autophagic pathway (CMA) aimed to selective protein targeting and translocation into the lysosomal lumen for degradation. To study the relevance of Lamp-2 in protein degradation, a lymphoblastoid cell line was obtained by EBV transformation of B-cells from a Danon patient. The derived cell line showed no significant expression of Lamp-2 protein. The steady-state mRNA and protein levels of alpha-synuclein, IΚBα, Rcan1, and glyceraldehyde-3-phosphate dehydrogenase, four proteins reported to be selective substrates of the CMA pathway, were similar in control and Lamp-2-deficient cells. Inhibition of protein synthesis showed that the half-life of alpha-synuclein, IΚBα, and Rcan1 was similar in control and Lamp-2-deficient cells, and its degradation prevented by proteasome inhibitors. Both in control and Lamp-2-deficient cells, induction of CMA and macroautophagy by serum and aminoacid starvation of cells for 8 h produced a similar decrease in IΚBα and Rcan1 protein levels and was prevented by the addition of lysosome and autophagy inhibitors. In conclusion, the results presented here showed that Lamp-2 deficiency in human lymphoblastoid cells did not modify the steady-state levels or the degradation of several protein substrates reported as selective substrates of the CMA pathway.
Keywords: Danon disease; LAMP-2; Autophagy; Ubiquitin proteasome; Chaperone-mediated autophagy; Alpha-synuclein; IkappaB; Rcan1; glyceraldehyde-3-phosphate dehydrogenase;

Lens ER-stress response during cataract development in Mip-mutant mice by Yuefang Zhou; Thomas M. Bennett; Alan Shiels (1433-1442).
Major intrinsic protein (MIP) is a functional water-channel (AQP0) that also plays a key role in establishing lens fiber cell architecture. Genetic variants of MIP have been associated with inherited and age-related forms of cataract; however, the underlying pathogenic mechanisms are unclear. Here we have used lens transcriptome profiling by microarray-hybridization and qPCR to identify pathogenic changes during cataract development in Mip-mutant (Lop/+) mice. In postnatal Lop/+ lenses (P7) 99 genes were up-regulated and 75 were down-regulated (> 2-fold, p = < 0.05) when compared with wild-type. A pathway analysis of up-regulated genes in the Lop/+ lens (P7) was consistent with endoplasmic reticulum (ER)-stress and activation of the unfolded protein response (UPR). The most up-regulated UPR genes (> 4-fold) in the Lop/+ lens included Chac1  >  Ddit3  >  Atf3  >  Trib3  >  Xbp1 and the most down-regulated genes (> 5-fold) included two anti-oxidant genes, Hspb1 and Hmox1. Lop/+ lenses were further characterized by abundant TUNEL-positive nuclei within central degenerating fiber cells, glutathione depletion, free-radical overproduction, and calpain hyper-activation. These data suggest that Lop/+ lenses undergo proteotoxic ER-stress induced cell-death resulting from prolonged activation of the Eif2ak3/Perk-Atf4-Ddit3-Chac1 branch of the UPR coupled with severe oxidative-stress.
Keywords: Lens; Cataract; Unfolded protein response; Oxidative stress; Mouse;

Downregulation of miR-205 in migrating epithelial tongue facilitates skin wound re-epithelialization by derepressing ITGA5 by Tao Wang; Na Zhao; Shuang Long; Lan Ge; Aiping Wang; Huiqin Sun; Xinze Ran; Zhongmin Zou; Junping Wang; Yongping Su (1443-1452).
Keratinocyte migration is essential for re-epithelialization during skin wound healing, but the molecular mechanisms regulating this cellular response remain to be completely clarified. Here we show that keratinocyte-specific miR-205 is significantly downregulated in the leading edge of the migrating epithelial tongue after skin injury in mice. In HaCaT keratinocytes, miR-205 could be downregulated by TGF-β1 stimulation. And similar to the effect of TGF-β1, miR-205 knockdown could promote keratinocyte migration in wound scratch model in vitro. Furthermore, topical inhibition of miR-205 by administrating Pluronic gel containing antagomir-205 could accelerate re-epithelialization in mouse skin wound model in vivo. Moreover, we identified integrin alpha 5 (ITGA5) as one key functional miR-205 target in the re-epithelialization process and epidermal downregulation of miR-205 may desilence ITGA5 to promote keratinocyte migration. And knockdown of ITGA5 would abolish the pro-migratory effects of miR-205 inhibition in vitro. What's more, we found dysregulation of miR-205 and its target ITGA5 in epidermis of clinical chronic wound samples with persistence of high level miR-205 and absence of ITGA5. Our findings indicate that downregulation of miR-205 in the leading migrating keratinocytes is critical for re-epithelialization and miR-205 may be a potential therapeutic target for chronic wounds.
Keywords: miR-205; Re-epithelialization; Wound healing; ITGA5; Chronic wounds;

Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function by Chun Chan; Jun Fan; Andrew E. Messer; Steve B. Marston; Hiroyuki Iwamoto; Julien Ochala (1453-1458).
In humans, more than 200 missense mutations have been identified in the ACTA1 gene. The exact molecular mechanisms by which, these particular mutations become toxic and lead to muscle weakness and myopathies remain obscure. To address this, here, we performed a molecular dynamics simulation, and we used a broad range of biophysical assays to determine how the lethal and myopathy-related H40Y amino acid substitution in actin affects the structure, stability, and function of this protein. Interestingly, our results showed that H40Y severely disrupts the DNase I-binding-loop structure and actin filaments. In addition, we observed that normal and mutant actin monomers are likely to form distinctive homopolymers, with mutant filaments being very stiff, and not supporting proper myosin binding. These phenomena underlie the toxicity of H40Y and may be considered as important triggering factors for the contractile dysfunction, muscle weakness and disease phenotype seen in patients.
Keywords: Myopathy; Actin; Contractile dysfunction; Small-angle X-ray scattering; In vitro motility assay; Molecular dynamics;