BBA - Molecular Basis of Disease (v.1792, #7)

Revelations and revolutions in the understanding of Parkinson’s disease by Ted M. Dawson; Darren J. Moore; Andrew B. West (585-586).

Mendelian forms of Parkinson's disease by Thomas Gasser (587-596).
Over the last few years, genetic findings have changed our views on Parkinson's disease (PD), as mutations in a growing number of genes are found to cause monogenic forms of the disorder. Point mutations in the gene for α-synuclein, as well as duplications and triplications of the wild-type gene cause a dominant form of PD in rare families, pointing towards mishandling of this protein as a crucial step in the molecular pathogenesis of the disorder. Mutations in the gene for leucine-rich repeat kinase 2 (LRRK2) have recently been identified as a much more common cause for dominant PD, while mutations in the parkin gene, in DJ-1, PINK1 and ATP13A2 all cause autosomal-recessive parkinsonism of early onset. Mutations in recessive genes probably are pathogenic through loss-of-function mechanisms, suggesting that their wild-type products protect dopaminergic cells against a variety of insults. Evidence is emerging that at least some of these genes may play a direct role in the etiology of the common sporadic form of PD. Further, it is likely that the cellular pathways identified in rare monogenic variants of the disease also shed light on the molecular pathogenesis in typical sporadic PD.
Keywords: Parkinson's disease; Monogenic; Synuclein; LRRK2; Parkin; PINK1; DJ-1;

Genetic susceptibility in Parkinson's disease by Jose Miguel Bras; Andrew Singleton (597-603).
It is hoped that an understanding of the genetic basis of Parkinson's disease (PD) will lead to an appreciation of the molecular pathogenesis of disease, which in turn will highlight potential points of therapeutic intervention. It is also hoped that such an understanding will allow identification of individuals at risk for disease prior to the onset of motor symptoms. A large amount of work has already been performed in the identification of genetic risk factors for PD and some of this work, particularly those efforts that focus on genes implicated in monogenic forms of PD, have been successful, although hard won. A new era of gene discovery has begun, with the application of genome wide association studies; these promise to facilitate the identification of common genetic risk loci for complex genetic diseases. This is the first of several high throughput technologies that promise to shed light on the (likely) myriad genetic factors involved in this complex, late-onset neurodegenerative disorder.
Keywords: Parkinson's disease; Synuclein; Tau; Glucocerebrosidase;

Genetic models of Parkinson disease by Kah-Leong Lim; Chee-Hoe Ng (604-615).
To date, a truly representative animal model of Parkinson disease (PD) remains a critical unmet need. Although toxin-induced PD models have served many useful purposes, they have generally failed to recapitulate accurately the progressive process as well as the nature and distribution of the human pathology. During the last decade or so, the identification of several genes whose mutations are causative of rare familial forms of PD has heralded in a new dawn for PD modelling. Numerous mammalian as well as non mammalian models of genetically-linked PD have since been created. However, despite initial optimism, none of these models turned out to be a perfect replica of PD. Meanwhile, genetic and toxin-induced models alike continue to evolve towards mimicking the disease more faithfully. Notwithstanding this, current genetic models have collectively illuminated several important pathways relevant to PD pathogenesis. Here, we have attempted to provide a comprehensive discussion on existing genetic models of PD.
Keywords: Parkinson disease; Synuclein; Parkin; DJ-1; Pink1; LRRK2; MPTP; Neurodegeneration; Dopamine;

Molecular mechanisms of α-synuclein neurodegeneration by Elisa A. Waxman; Benoit I. Giasson (616-624).
α-Synuclein is an abundant highly charged protein that is normally predominantly localized around synaptic vesicles in presynaptic terminals. Although the function of this protein is still ill-defined, genetic studies have demonstrated that point mutations or genetic alteration (duplications or triplications) that increase the number of copies of the α-synuclein (SCNA) gene can cause Parkinson's disease or the related disorder dementia with Lewy bodies. α-Synuclein can aberrantly polymerize into fibrils with typical amyloid properties, and these fibrils are the major component of many types of pathological inclusions, including Lewy bodies, which are associated with neurodegenerative diseases, such as Parkinson's disease. Although there is substantial evidence supporting the toxic nature of α-synuclein inclusions, other modes of toxicity such as oligomers have been proposed. In this review, some of the evidence for the different mechanisms of α-synuclein toxicity is presented and discussed.
Keywords: α-synuclein; Amyloid; Fibril; Parkinson's disease; Protofibril; Toxicity;

The frequency and potency of mutations in the LRRK2 gene redefine the role of genetic susceptibility in Parkinson's disease. Dominant missense mutations that fulfill initial criteria for potential gain of function mechanisms coupled with enzymatic activity likely amenable to small molecule inhibition position LRRK2 as a promising therapeutic target. Herein, key observations from the clinic to the test tube are highlighted together with points of contention and outstanding critical issues. Resolution of the critical issues will expedite the development of therapies that exploit LRRK2 activity for neuroprotection strategies.
Keywords: Leucine-rich repeat kinase 2; Dardarin; Neurodegeneration; Kinase; Movement disorder; Molecular genetic;

Intrabody and Parkinson's disease by Chun Zhou; Serge Przedborski (634-642).
The intrabody technology has become a promising therapeutic avenue for a variety of incurable diseases. This technology is an intracellular application of gene-engineered antibodies, aimed at ablating the abnormal function of intracellular molecules. Parkinson's disease (PD) is a common neurodegenerative disease with no cure. Recent studies have explored possible intrabody applications against alpha-synuclein (α-syn), whose misfolding is believed to cause a familial form of PD. Here, we review the origin, production, and therapeutic mechanisms of intrabodies and the potential of intrabody protection against α-syn toxicity. Furthermore, we propose possible intrabody applications against leucine-rich repeat kinase 2 (LRRK2), whose mutations are the most frequent known cause of familial and sporadic PD.
Keywords: Parkinson's disease; Alpha-synuclein; LRRK2; Intrabody; scFv; Gene-engineered antibody; Molecular therapy; Gene therapy;

Oxidative and nitrosative stress in Parkinson's disease by Anthony H.K. Tsang; Kenny K.K. Chung (643-650).
Parkinson's disease (PD) is a common neurodegenerative disorder marked by movement impairment caused by a selective degeneration of dopaminergic neurons. The mechanism for dopaminergic neuronal degeneration in PD is not completely clear, but it is believed that oxidative and nitrosative stress plays an important role during the pathogenesis of PD. This notion is supported by various studies that several indices of oxidative and nitrosative stress are increased in PD patients. In recent years, different pathways that are known to be important for neuronal survival have been shown to be affected by oxidative and nitrosative stress. Apart from the well-known oxidative free radicals induced protein nitration, lipid peroxidation and DNA damage, increasing evidence also suggests that some neuroprotective pathways can be affected by nitric oxide through S-nitrosylation. In addition, the selective dopaminergic neurodegeneration suggests that generation of oxidative stress associated with the metabolism of dopamine is an important contributor. Thorough understanding of how oxidative stress can contribute to the pathogenesis of PD will help formulate potential therapy for the treatment of this neurodegenerative disorder in the future.
Keywords: Parkinson's disease; Oxidative stress; Nitric oxide; S-nitrosylation; Free radical;

Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis by Rebecca Banerjee; Anatoly A. Starkov; M. Flint Beal; Bobby Thomas (651-663).
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with unknown etiology. It is marked by widespread neurodegeneration in the brain with profound loss of A9 midbrain dopaminergic neurons in substantia nigra pars compacta. Several theories of biochemical abnormalities have been linked to pathogenesis of PD of which mitochondrial dysfunction due to an impairment of mitochondrial complex I and subsequent oxidative stress seems to take the center stage in experimental models of PD and in postmortem tissues of sporadic forms of illness. Recent identification of specific gene mutations and their influence on mitochondrial functions has further reinforced the relevance of mitochondrial abnormalities in disease pathogenesis. In both sporadic and familial forms of PD abnormal mitochondrial paradigms associated with disease include impaired functioning of the mitochondrial electron transport chain, aging associated damage to mitochondrial DNA, impaired calcium buffering, and anomalies in mitochondrial morphology and dynamics. Here we provide an overview of specific mitochondrial functions affected in sporadic and familial PD that play a role in disease pathogenesis. We propose to utilize these gained insights to further streamline and focus the research to better understand mitochondria's role in disease development and exploit potential mitochondrial targets for therapeutic interventions in PD pathogenesis.
Keywords: Mitochondrial dysfunction; Mitochondrial DNA; Electron transport chain; Permeability transition pore; α-synuclein; Parkin; PINK1; DJ-1; LRRK2;

The evidence for impairment in the ubiquitin proteasome system (UPS) in Parkinson's disease (PD) is mounting and becoming increasingly more convincing. However, it is presently unclear whether UPS dysfunction is a cause or result of PD pathology, a crucial distinction which impedes both the understanding of disease pathogenesis and the development of effectual therapeutic approaches. Recent findings discussed within this review offer new insight and provide direction for future research to conclusively resolve this debate.
Keywords: Ubiquitin proteasome system; Parkinson's disease; Alpha-synuclein; Ubiquitin ligase; Substantia nigra; Aggregation; Parkin; Lewy bodies; DJ-1; Leucine-rich repeat kinase 2;

Targets for neuroprotection in Parkinson's disease by Talene A. Yacoubian; David G. Standaert (676-687).
Current therapies for Parkinson's disease significantly improve the quality of life for patients suffering from this neurodegenerative disease, yet none of the current therapies has been convincingly shown to slow or prevent the progression of disease. Much has been learned about the pathophysiology of Parkinson's disease in recent years, and these discoveries offer a variety of potential targets for protective therapy. Mechanisms implicated in the disease process include oxidative stress, mitochondrial dysfunction, protein aggregation and misfolding, inflammation, excitotoxicity, and apoptosis. At the same time, the involvement of these diverse processes makes modeling the disease and evaluation of potential treatments difficult. In addition, available clinical tools are limited in their ability to monitor the progression of the disease. In this review, we summarize the different pathogenic mechanisms implicated in Parkinson's disease and neuroprotective strategies targeting these mechanisms currently under clinical study or under preclinical development, with a view towards strategies that seem most promising.
Keywords: Oxidative stress; Neuroinflammation; Excitotoxicity; Apoptosis; Trophic factor; Alpha-synuclein; Clinical trial;

Cell replacement therapy for Parkinson's disease by Ruwani Wijeyekoon; Roger A. Barker (688-702).
Parkinson's disease (PD) is a progressive neurodegenerative disorder in which the degeneration of dopaminergic neurons projecting from the substantia nigra to the striatum is a key pathological feature of the disease. Although pharmacological dopamine replacement is generally very effective in early disease, it is only a symptomatic therapy and can have significant side effects with long term use. One of the key strategies in a more restorative approach to PD therapy involves replacement of this degenerating nigro-striatal dopaminergic network with cells and several possible cell sources are being explored. While much experience and some success have been gained with fetal ventral mesencephalic (FVM) tissue transplants, the rapidly advancing stem cell field is providing attractive alternative options which circumvent many of the ethical and practical problems inherent in trials with FVM tissue. Of these embryonic stem cells and induced pluripotent stem cells seem the most promising. However further development and optimisation of the safety and efficacy of the techniques involved in generating and manipulating these, as well as other, cell sources will be essential before any further clinical trials are carried out.
Keywords: Parkinson's disease; Cell replacement; Transplantation; Fetal ventral mesencephalon; Stem cell;

The ever-evolving understanding of the neuronal systems involved in Parkinson's disease together with the recent advances in recombinant viral vector technology has led to the development of several gene therapy applications that are now entering into clinical testing phase. To date, four fundamentally different approaches have been pursued utilizing recombinant adeno-associated virus and lentiviruses as vectors for delivery. These strategies aim either to restore the lost brain functions by substitution of enzymes critical for synthesis of neurotransmitters or neurotrophic factors as a means to boost the function of remaining neurons in the diseased brain. In this review we discuss the differences in mechanism of action and describe the scientific rationale behind the currently tested gene therapy approaches for Parkinson's disease in some detail and pinpoint their individual unique strengths and weaknesses.
Keywords: Viral vector; In vivo gene transfer; Neurotrophic factor; Neurorestoration; Neuroprotection; Enzyme replacement; Dopamine; Tyrosine hydroxylase;

Viral parkinsonism by Haeman Jang; David A. Boltz; Robert G. Webster; Richard Jay Smeyne (714-721).
Parkinson's disease is a debilitating neurological disorder that affects 1–2% of the adult population over 55 years of age. For the vast majority of cases, the etiology of this disorder is unknown, although it is generally accepted that there is a genetic susceptibility to any number of environmental agents. One such agent may be viruses. It has been shown that numerous viruses can enter the nervous system, i.e. they are neurotropic, and induce a number of encephalopathies. One of the secondary consequences of these encephalopathies can be parkinsonism, that is both transient as well as permanent. One of the most highlighted and controversial cases of viral parkinsonism is that which followed the 1918 influenza outbreak and the subsequent induction of von Economo's encephalopathy. In this review, we discuss the neurological sequelae of infection by influenza virus as well as that of other viruses known to induce parkinsonism including Coxsackie, Japanese encephalitis B, St. Louis, West Nile and HIV viruses.
Keywords: Influenza virus; von Economo's encephalopathy; Parkinson's disease; Neurotropism; H5N1;

Imaging neurodegeneration in Parkinson's disease by Nicola Pavese; David J. Brooks (722-729).
Neuroimaging techniques have evolved over the past several years giving us unprecedented information about the degenerative process in Parkinson's disease (PD) and other movement disorders. Functional imaging approaches such as positron emission tomography (PET) and single photon emission computerised tomography (SPECT) have been successfully employed to detect dopaminergic dysfunction in PD, even while at a preclinical stage, and to demonstrate the effects of therapies on function of intact dopaminergic neurons within the affected striatum. PET and SPECT can also monitor PD progression as reflected by changes in brain levodopa and glucose metabolism and dopamine transporter binding. Structural imaging approaches include magnetic resonance imaging (MRI) and transcranial sonography (TCS). Recent advances in voxel-based morphometry and diffusion-weighted MRI have provided exciting potential applications for the differential diagnosis of parkinsonian syndromes. Substantia nigra hyperechogenicity, detected with TCS, may provide a marker of susceptibility to PD, probably reflecting disturbances of iron metabolism, but does not appear to correlate well with disease severity or change with disease progression. In the future novel radiotracers may help us assess the involvement of non-dopaminergic brain pathways in the pathology of both motor and non-motor complications in PD.
Keywords: Parkinson's disease; Imaging; Neurodegeneration; PET; MRI;

The two most frequent synucleinopathies, Parkinson disease (PD) or brainstem predominant type of Lewy body disease, and dementia with Lewy bodies (DLB), are neurodegenerative multisystem disorders with widespread occurrence of α-synuclein containing deposits in the central, peripheral, and autonomic systems. For both Lewy body-related disorders staging/classification systems based on semiquantitative assessment of the distribution and progression pattern of α-synuclein pathology are used that are considered to be linked to clinical dysfunctions. In PD a six-stage system is suggested to indicate a predictable sequence of lesions with ascending progression from medullary and olfactory nuclei to the cortex, the first two presymptomatic stages related to incidental Lewy body disease, stages 3 and 4 presenting with motor symptoms and the last two (cortical) stages frequently associated with cognitive impairment. DLB, according to consensus pathologic guidelines, by semiquantitative scoring of α-synuclein pathology (Lewy body density and distribution) in specific brain regions, is distinguished into three phenotypes (brainstem, transitory/limbic and diffuse cortical), also considering concomitant Alzheimer-related pathology. Recent retrospective clinico-pathologic studies, although largely confirming the staging system, particularly for younger onset PD with long duration, have shown that between 6.3 and 43% of cases did not follow the proposed caudo-rostral progression pattern of α-synuclein pathology. In 7 to 8.3% of clinically manifested PD cases with synuclein inclusions in midbrain and cortex corresponding to LB stages 4–5 the medullary nuclei were spared, whereas mild parkinsonian symptoms were already observed in stages 2 and 3. There is considerable clinical and pathologic overlap between PD (with or without dementia) and DLB, corresponding to Braak LB stages 5 and 6, both frequently associated with variable Alzheimer-type pathology. Dementia often does not correlate with progressed stages of Lewy body pathology, but is related to concomitant Alzheimer lesions or mixed pathologies. There is no relationship between Braak LB stages and clinical severity of PD. Therefore, the predictive validity of this concept is doubtful, since in large unselected autopsy series 30 to 55% of elderly subjects with widespread α-synuclein pathology (Braak stages 5–6) revealed no definite neuropsychiatric symptoms or were not classifiable, indicating compensatory mechanisms of the brain. The causes and molecular basis of rather frequent deviations from the proposed caudo-rostral progression of α-synuclein pathology in PD, its relation to the onset of classical parkinsonian symptoms, the causes for the lack of definite clinical symptoms despite widespread α-synuclein pathology in the nervous system, their relations to Alzheimer-type lesions, and the pathophysiologic impact of both pathologies remain to be further elucidated.
Keywords: α-synucleinopathies; Dementia with Lewy bodies; Parkinson disease; Disease staging; Braak Lewy body stages; DLB consensus pathologic guidelines;