Applied Geochemistry (v.22, #4)

Sources of variation in δ13C of fossil fuel emissions in Salt Lake City, USA by S.E. Bush; D.E. Pataki; J.R. Ehleringer (715-723).
The isotopic composition of fossil fuels is an important component of many studies of C sources and sinks based on atmospheric measurements of CO2. In C budget studies, the isotopic composition of crude petroleum and CH4 are often used as a proxy for the isotopic composition of CO2 emissions from combustion. In this study, the C isotope composition (δ13C) of exhaust from the major fossil fuel emission sources in Salt Lake City, USA, was characterized with 159 measurements of vehicle exhaust of various types and eight measurements of residential furnace exhaust. These two sources were found to be isotopically distinct, and differed from global-scale estimates based on average values for crude petroleum and CH4. Vehicle-specific factors such as engine load and operation time had no effect on δ13C of vehicle exhaust. A small difference was found between the mean δ13C of vehicle exhaust collected randomly from different vehicles and the mean δ13C of gasoline collected from multiple fueling stations representing major gasoline distributors in Salt Lake City and the surrounding area. However, a paired comparison of δ13C of exhaust and gasoline for six different vehicles did not show any consistent C isotope fractionation during vehicle combustion. The mean δ13C of crude petroleum processed for local distribution differed slightly from refined gasoline collected at multiple fueling stations, but time lags between processing and transportation cannot be ruled out as an uncontrollable contributing factor. Measured isotope ratios were then combined with fuel consumption statistics to predict the annual cycle of δ13C of fossil fuel emissions for the Salt Lake City metropolitan area. The results showed that the isotopic composition of CO2 emissions from fossil fuel combustion varied by almost 3‰ over the course of the 2002 calendar year. This study illustrates that on a regional scale, the isotopic composition of fossil fuel emissions shows a high degree of both spatial and temporal variability that may influence characterization of C sources and sinks with atmospheric measurements.

Bulk Cr, Cu, Ni, Pb and Zn contents were analyzed in a Cr–Ni rich basalt, derived andic soil and in grass subaerial and aerial components to assess natural trace metal mobility in soil. Phytoavailability and relative mobility of elements were quantified by three different approaches: selective extractions, calculation at mineral scale after XRD, SEM-EDS and EMP analyses and measurement of pools at profile scale. Pool variations from rock to soil horizons give a view of the long-term mobility, while selective extractions and comparisons of pools measured in plants and top soil provide estimations of the current mobility and bioavailability. Major amounts of trace metals were held in the solid constituents of the soil. Examination of the solid residues following extractions clarified the potential mobility of these metal containing solids. Water soluble and exchangeable fractions never exceed 3% of the total trace metal amounts, which is of similar magnitude to pools found in grass roots and shoots. Zinc is the most easily extracted element followed by Cu, Ni and Cr. Over the short term, Zn also occurs in greater amounts in grass. Its involvement in organic matter turnover explains its greater accumulation in the soil profile over the long term. Chromium and Ni which are predominantly held in stable minerals (spinels) are less available for plants in the short term. They are both relatively depleted in soil, compared to initial pools in rock, over the long term. From a methodological point of view, the results demonstrate the necessity of comparing selective extraction data with other quantitative methods for assessing both short-term and long-term trace metal mobility and bioavailability.

Tracing of variabilities within a geological barrier by molecular organic geochemistry. by Yann Hautevelle; Raymond Michels; Fabrice Malartre; Marcel Elie; Alain Trouiller (736-759).
The Callovo-Oxfordian claystones located at 500 m depth at Bure (Meuse, France) are currently being investigated by Andra (the French National Radioactive Waste Management Agency) for testing the feasibility of long-term and deep geological nuclear waste disposal. In order to evaluate its potential as a geological barrier, it is very important to study, assess and describe its physico-chemical variability. The molecular biomarker composition of 150 samples of these claystones and their surrounding limestones carry diverse information on the sources of the sedimentary organic matter, the chemistry of the depositional environment, the preservation and diagenesis conditions. It also allows assessing the degree of lateral and vertical variability of the organic matter within these sedimentary series. The abundance of unsaturated biomarkers, the distribution of steroids and hopanoids and CPI values >2 prove the thermal immaturity of the organic matter. The co-occurrence of plankton, bacteria and land plant biomarkers indicate that the organic matter is a mixture of marine and continental contributions. The data also reveal that the organic matter was deposited under oxic and open-sea conditions except for a brief event of photic zone anoxia at the beginning of the Middle Callovian. In the claystones, the geosynthesis of diasterenes is favored to the detriment of the formation of steranes, especially in smectite-rich levels, and the organic matter is rapidly isolated from oxidizing then reducing conditions after the deposition due to the protective effect of clays. On the scale investigated, the claystones are characterized by a unique molecular facies and are thus homogenous from their organic content point of view. Yet, detailed investigation of specific molecular families indicates changes related to major claystone–limestone transitions. The homogeneity of these claystones can be explained by the paleogeographic position of their depositional setting and the plane and sub-horizontal paleotopography on which they were deposited. This study demonstrates the efficiency of organic geochemistry in the assessment of the variability of geological barriers.

Seasonal variations of ochreous precipitates in mine effluents in Finland by Sirpa Kumpulainen; Liisa Carlson; Marja-Liisa Räisänen (760-777).
Ochreous precipitate and water samples were collected from the surroundings of seven closed sulphide mines in Finland. In the Hammaslahti Zn–Cu–Au mine, Otravaara pyrite mine and Paroistenjärvi Cu–W–As mine, the collection was repeated in different seasons to study mineralogical and geochemical variations of precipitates. The sampling was done in 1999–2002 from the ditches and drainage ponds of the tailings and waste rock piles that are susceptible to seasonal changes. Mineralogy of the precipitates was evaluated by X-ray diffraction (XRD) and infrared spectroscopy (IR), and precipitate geochemistry was examined by selective extractions. Schwertmannite (Fe8O8(OH)6SO4) was the most typical Fe hydroxide mineral found. Goethite was almost as common as schwertmannite, was often poorly ordered, and contained up to 10 wt.% of SO4. Goethite and schwertmannite were commonly found as mixtures, and they occurred in similar pH and SO4 concentrations. Ferrihydrite (nominally Fe5HO8  · 4H2O) was typically found in areas not influenced by acid mine drainage, and also in acid mine waters with high organic matter or As content. Jarosite (KFe3(SO4)2(OH)6) was found only in one site. In addition, some gypsum (CaSO4  · 2H2O) and aluminous sulphate precipitates (presumably basaluminite, Al4(SO4)(OH)10  · 5H2O) were identified. Selective extractions showed that acid extracts Fetot/Stot-ratios of schwertmannite and goethite samples were similar, but the ratio of oxalate-extractable to total Fe, Feox/Fetot, of goethite samples were lower than those of the schwertmannite samples. Only Al, Si and As were bound to precipitates in substantial amounts, up to several wt.%. In schwertmannites and goethites, Al, Cu, Co, Mn and Zn were mostly structural, substituting for Fe in an Fe oxyhydroxide structure or bound to surface adsorption sites in pores limited by diffusion. In ferrihydrites, heavy metals were also partly bound in adsorbed form dissolving in acid ammonium acetate. Ferrihydrites and goethites were more enriched in Co, Mn and Zn than schwertmannites, but schwertmannites and ferrihydrites were more enriched in As than goethites. Mineralogical and geochemical evidence showed that in the spring, after the snowmelt, the acid mine drainage precipitates were predominantly schwertmannite, and were partly transformed during warm summer months to goethite. The phase transformation of precipitates was followed by a decrease in pH values and increase in SO4 concentrations of waters. Adsorbed As retarded the phase transformation.

Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32–1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26–0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O2 atmosphere; (3) room atmosphere (relative humidity ∼20–60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and 57Fe Mössbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. 57Fe Mössbauer spectroscopy also shows a much greater proportion of Fe3+ forms (jarosite, Fe3+ sulfate, FeOOH) for samples stored under wet conditions, but much less difference among samples stored under dry conditions in different atmospheres. The air-wet experiments show evidence of pyrite re-precipitation from soluble ferric sulfates, with As retention in the jarosite phase. Extents of As and Fe oxidation were similar for samples having differing As substitution in pyrite, suggesting that environmental conditions outweigh the composition and amount of pyrite as factors influencing the oxidation rate of Fe sulfides in coal.

Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France) by C. Casiot; M. Ujevic; M. Munoz; J.L. Seidel; F. Elbaz-Poulichet (788-798).
Mining residues from the Sb mine of Bournac in the upper Orb River valley (Southern France), constitute an important source of As and Sb pollution. Arsenic concentrations are as high as 78 μg/L and Sb reaches 32 μg/L in the small creek draining the tailings impoundment. Although both metalloids occur mainly in oxidized form in the creek water, their behaviour differs significantly. Iron oxides are the main carrier phases for both elements in the suspended particulate matter. In oxic conditions the two elements are mainly present in water in oxidised form As(V) and Sb(V) and both field studies and laboratory experiments indicate a higher affinity of As(V) than Sb(V) for the solid phase. In the pool, which receives the water from Bournac Creek, the reductive dissolution of Fe-oxides is linked to the oxidation of small pyrite grains transported from the tailings dump. In oxic conditions Sb is released to solution more efficiently than As. Conversely, in anoxic conditions, mobilisation of As is greater than that of Sb. This is attributed to the reduction of As, which favours its mobility. Whatever the conditions, the activity of bacteria naturally present in the sediments enhances the remobilization of Sb in oxidizing conditions and that of As in reducing conditions.

Thermal springs, fumaroles and gas vents of continental Yemen: Their relation with active tectonics, regional hydrology and the country’s geothermal potential by Angelo Minissale; Mohamed A. Mattash; Orlando Vaselli; Franco Tassi; Ismail N. Al-Ganad; Enrico Selmo; Nasr M. Shawki; Dario Tedesco; Robert Poreda; Abdassalam M. Ad-Dukhain; Mohammad K. Hazzae (799-820).
Most thermal springs of continental Yemen (about 65 emergences at 48 sampling sites) and a couple of fumaroles and boiling water pools have been sampled and analyzed for chemical and isotopic composition in the liquid phase and the associated free-gas phase. Whatever the emergence, all the water discharges have an isotopic signature of meteoric origin. Springs seeping out from high altitudes in the central volcanic plateau show a prevalent Na–HCO3-composition, clearly affected by an anomalous flux of deep CO2 deriving from active hydrothermal systems located in the Jurassic Amran Group limestone sequence and/or the Cretaceous Tawilah Group, likely underlying the 2000–3000 m thick volcanic suite. At lower elevations, CO2 also affects the composition of some springs emerging at the borders of the central volcanic plateau.Although mixing to a limited extent with organic CO2 infiltrating together with the meteoric recharge waters cannot be ruled out, all the CO2-rich gas samples have a δ 13C–CO2 signature that falls in the range of mantle CO2 (−3 <  δ 13C < −7‰ V-PDB). The relatively high 3He/4He (1 <  R/R a  < 3.2) ratios measured in all the CO2-rich springs and also some mixed N2–CO2 gas vents in the far east Hadramaut region support the presence of mantle magmas and related hydrothermal systems residing at the crust level in several areas of Yemen. This well agrees with the presence of Quaternary basaltic magmatic activity along the Gulf of Aden, as well as inside the central Yemen volcanic plateau.Presently, the thermal springs of Yemen are prevalently used for spas and/or bathing. Nevertheless, liquid- and gas-geothermometry and geological considerations suggest that there are at least three areas (Al Lisi, Al Makhaya and Damt) inside the Yemen volcanic plateau (around Dhamar) that may be promising prospects for the future development of geothermal energy in Yemen. Alternatively, they could be used as a source of energy for small-to-medium scale agriculture and/or industrial purposes. Moreover, most of the thermal water discharges have the chemical characteristics of potable waters and, in an arid country like Yemen, they have to be considered as long-term water supply resources if the country should face water shortages.

High-resolution sampling (every 3 h) of SPM was performed during a major flood event in a heterogeneous, medium scale watershed of the Garonne-Gironde fluvial-estuarine system (the Lot River; A  = 10,700 km2; Q  = 151 m3/s). Particulate metal and metalloid (Cd, Zn, Pb, Co, Cr, Ni, Mo, V, U, As, Sb, Th) concentrations were compared with monthly data of the same site (Temple site) obtained during 1999–2002. During the flood event, suspended particulate matter (SPM) concentrations closely followed river discharge with a maximum value (1530 mg/L) coinciding with the discharge peak (2970 m3/s). Trace metal/metalloid concentrations showed significant temporal variations and very contrasted responses. Particulate concentrations were similar to baseline values at the beginning of the flood and mostly increased during the event, showing anticlockwise and complex shape hystereses. Comparison of SPM yield (440,000 t) and particulate metal/metalloid fluxes during the flood with annual fluxes (1999–2002) highlights the great importance of major flood events in fluvial transport. Adequate sampling frequency during floods is necessary for reliable annual flux estimates and provides geochemical signals that may greatly improve our understanding of fluvial transport processes. The scenario of SPM and metal and metalloid transport during the flood are reconstructed by combining variations of Zn, Cd and Sb concentrations, concentration ratios (e.g. Zn/Cd, As/Th, Cd/Th) and hysteresis loops. Changes in SPM and metal/metalloid transport during distinct key stages of the flood were attributed to successive dominance of different water masses transporting material from different sources (e.g. industrial point source, bed sediment from reservoirs, plain erosion). Flood management (dam flushing) clearly enhanced the remobilization of up to 30-a old polluted sediment from reservoir lakes. Sediment remobilization accounted for ∼185,000 t of SPM (i.e. 42% of the total SPM fluxes during the flood) and strongly contributed to particulate metal/metalloid transport for Cd (90%), Zn (83%) and Pb (61%). Therefore, flood management needs to be taken into consideration in future models for erosion and pollutant transport.

Rare earth elements as tracers of sediment contamination by phosphogypsum in the Santos estuary, southern Brazil by Sonia Maria Barros de Oliveira; Paulo Sergio Cardoso da Silva; Barbara Paci Mazzilli; Deborah Ines Teixeira Favaro; Catia Heloisa Saueia (837-850).
In the Cubatão region, southern Brazil, sediments are transported by several rivers from the Serra do Mar Ridge into the Santos estuary. Fertilizer plants have been operating along the margins of one of these rivers (Mogi River) producing a large volume of phosphogypsum, which is stockpiled in nearby areas. Surface sediments of the Mogi River were sampled upstream and downstream in relation to the point where the effluents of the phosphogypsum piles flow into the drainage system. In the vicinity of this point one sediment core was collected. Results show that REE, Ba, Zr and Th concentrations in the non-contaminated sediments are of the same order as those present in the upper continental crust. The contaminated samples present a composition affected by that of the phosphogypsum, marked by a higher concentration of these elements and a stronger degree of REE fractionation. These phosphogypsum characteristics are inherited from the Catalão igneous phosphate ore and were moderately modified by the industrial process of phosphoric acid production. The phosphogypsum signal decreases rapidly downstream, pointing to a limited area of influence of the stacks. The deepest sediments of the core are also free of contamination, representing a time interval prior to the deposition of phosphogypsum wastes on the banks of the estuary.

Element concentrations and variations along a 120-km transect in southern Norway – Anthropogenic vs. geogenic vs. biogenic element sources and cycles by Clemens Reimann; Arnold Arnoldussen; Peter Englmaier; Peter Filzmoser; Tor Erik Finne; Robert G. Garrett; Friedrich Koller; Øystein Nordgulen (851-871).
Rock samples and the C-, B- and O-horizons of soils developed on these rocks were collected in forested areas along a 120-km south–north transect in southern Norway, passing through the city of Oslo. Forty samples (1 site/3 km) were analysed for 37 chemical elements (Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sr, Te, Th, Ti, Tl, U, V, W and Zn) following an aqua regia digestion; pH (water extract) and loss on ignition were also determined. The O-horizon soils were additionally analysed for Pt. Gold is the only element that shows a clear anthropogenic peak in the O-horizon soils collected from the city of Oslo. Silver, Au, Bi, Cd, Hg, Pb, S, Sb, Se and Sr all show a strong enrichment in the O-horizon when compared to the underlying C-horizon or the bedrock along the full length of the transect. Neither geology nor anthropogenic input of elements dominate the observed patterns. The most important factors for the observed element concentrations in the O-horizon are weathering, uptake (or rejection) of elements by plants and the kinetics of decay of the organic material in the O-horizon. Climate, especially temperature and precipitation, has an important influence on the formation and decay rates of the organic soil layer. Acid precipitation will delay the decomposition of the organic layer and lead to a natural enrichment of several metals in the O-horizon. Land use change, deforestation and liming can all increase the decay kinetics of organic matter and thus result in a release of the stored element pool.