BBA - Reviews on Cancer (v.1856, #2)

Due to the increase in life expectancy in the last decades, as well as changes in lifestyle, cancer has become one of the most common diseases both in developed and developing countries. Early detection remains the most promising approach to improve long-term survival of cancer patients and this may be achieved by efficient screening of biomarkers in biological fluids. Great efforts have been made to identify specific alterations during oncogenesis. Changes at the cellular glycosylation profiles are among such alterations. The “glycosylation machinery” of cells is affected by malignant transformation due to the altered expression of glycogens, leading to changes in glycan biosynthesis and diversity. Alterations in the post-translational modifications of proteins that occur in cancer result in the expression of antigenically distinct glycoproteins. Therefore, these aberrant and cancer-specific glycoproteins and the autoantibodies that are produced in response to their presence constitute targets for cancer biomarkers' search. Different strategies have been implemented for the discovery of cancer glycobiomarkers and are herein reviewed, along with their potentialities and limitations. Practical issues related with serum analysis are also addressed, as well as the challenges that this area faces in the near future.
Keywords: Cancer biomarkers; Aberrant glycosylation; Glycoproteins; Serum; Discovery;

PDK1: A signaling hub for cell migration and tumor invasion by Paolo Armando Gagliardi; Laura di Blasio; Luca Primo (178-188).
The ability of cells to migrate is essential for different physiological processes including embryonic development, angiogenesis, tissue repair and immune response. In the context of cancer such abilities acquire dramatic implications, as they are exploited by tumor cells to invade neighboring or distant healthy tissues.3-Phosphoinositide dependent protein kinase-1 (PDK1 or PDPK1) is an ancient serine-threonine kinase belonging to AGC kinase family. An increasing amount of data points at a pivotal role for PDK1 in the regulation of cell migration. PDK1 is a transducer of PI3K signaling and activates multiple downstream effectors, thereby representing an essential hub coordinating signals coming from extracellular cues to the cytoskeletal machinery, the final executor of cell movement. Akt, PAK1, β3 integrin, ROCK1, MRCKα and PLCγ1 are, according to the literature, the signaling transducers through which PDK1 regulates cell migration.In addition, PDK1 contributes to tumor cell invasion by regulating invadopodia formation and both amoeboid and collective cancer cell invasion. This and other pieces of evidence, such as its reported overexpression across several tumor types, corroborate a PDK1 role tumor aggressiveness.Altogether, these findings indicate the possibility to rationally target PDK1 in human tumors in order to counteract cancer cell dissemination in the organism.
Keywords: PDPK1; Cancer; PI3K; PIK3CA; Akt;

Lung cancer: Biology and treatment options by Hassan Lemjabbar-Alaoui; Omer UI Hassan; Yi-Wei Yang; Petra Buchanan (189-210).
Lung cancer remains the leading cause of cancer mortality in men and women in the U.S. and worldwide. About 90% of lung cancer cases are caused by smoking and the use of tobacco products. However, other factors such as radon gas, asbestos, air pollution exposures, and chronic infections can contribute to lung carcinogenesis. In addition, multiple inherited and acquired mechanisms of susceptibility to lung cancer have been proposed. Lung cancer is divided into two broad histologic classes, which grow and spread differently: small-cell lung carcinomas (SCLCs) and non-small cell lung carcinomas (NSCLCs). Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, and targeted therapy. Therapeutic-modalities recommendations depend on several factors, including the type and stage of cancer. Despite the improvements in diagnosis and therapy made during the past 25 years, the prognosis for patients with lung cancer is still unsatisfactory. The responses to current standard therapies are poor except for the most localized cancers. However, a better understanding of the biology pertinent to these challenging malignancies, might lead to the development of more efficacious and perhaps more specific drugs. The purpose of this review is to summarize the recent developments in lung cancer biology and its therapeutic strategies, and discuss the latest treatment advances including therapies currently under clinical investigation.
Keywords: Lung cancer; Non-Small Cell Lung; Small-cell lung carcinomas; Mesothelioma; Therapies; Treatments; Surgery; Targeted therapies; Immunotherapies;

Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets by Seema Chugh; Vinayaga S. Gnanapragassam; Maneesh Jain; Satyanarayana Rachagani; Moorthy P. Ponnusamy; Surinder K. Batra (211-225).
Mucins are large glycoproteins expressed on the epithelia that provide a protective barrier against harsh insults from toxins and pathogenic microbes. These glycoproteins are classified primarily as being secreted and membrane-bound; both forms are involved in pathophysiological functions including inflammation and cancer. The high molecular weight of mucins is attributed to their large polypeptide backbone that is extensively covered by glycan moieties that modulate the function of mucins and, hence, play an important role in physiological functions. Deregulation of glycosylation machinery during malignant transformation results in altered mucin glycosylation. This review describes the functional implications and pathobiological significance of altered mucin glycosylation in cancer. Further, this review delineates various factors such as glycosyltransferases and tumor microenvironment that contribute to dysregulation of mucin glycosylation during cancer. Finally, this review discusses the scope of mucin glycan epitopes as potential diagnostic and therapeutic targets.Display Omitted
Keywords: Mucin; Glycan; Cancer; O-glycosylation; Carbohydrate antigen; Glycosyltransferase;

Brain-Expressed X-linked (BEX) proteins in human cancers by Julhash U. Kazi; Nuzhat N. Kabir; Lars Rönnstrand (226-233).
The Brain-Expressed X-linked (BEX) family proteins are comprised of five human proteins including BEX1, BEX2, BEX3, BEX4 and BEX5. BEX family proteins are expressed in a wide range of tissues and are known to play a role in neuronal development. Recent studies suggest a role of BEX family proteins in cancers. BEX1 expression is lost in a subgroup of patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Expression of BEX1 controls cell surface receptor signaling and restores imatinib response in resistant cells. BEX2 is overexpressed in a group of breast cancer patients and also in gliomas. Increased BEX2 expression led to enhanced NF-κB signaling as well as cell proliferation. Although BEX2 acts as tumor promoter in a subset of breast cancer, BEX3 expression displayed an opposite role. Overexpression of BEX3 resulted in inhibition of tumor formation in breast cancer mouse xenograft models. The role of BEX4 and BEX5 in cancer has not yet been defined. Collectively this suggests that BEX family members have distinct roles in cancers. While BEX1 and BEX3 act as tumor suppressors, BEX2 seems to act as an oncogene.
Keywords: Glioma; Breast cancer; Chronic myeloid leukemia; Acute myeloid leukemia; NADE;

While human gene therapy has gained significant attention for its therapeutic promise, CRISPR/Cas9 technology has made a breakthrough as an efficient genome editing tool by emulating prokaryotic immune defense mechanisms. Although many studies have found that CRISPR/Cas9 technology is more efficient, specific and manipulable than previous generations of gene editing tools, it can be further improved by elevating its overall efficiency in a higher frequency of genome modifications and reducing its off-target effects. Here, we review the development of CRISPR/Cas9 technology, focusing on enhancement of its sequence specificity, reduction of off-target effects and delivery systems. Moreover, we describe recent successful applications of CRISPR/Cas9 technology in laboratory and clinical studies.
Keywords: Delivery methods; Genome editing; Reduced off-target effects; Sequence specificity; Therapeutics; CRISPR/Cas9 applications;

The Wnts of change: How Wnts regulate phenotype switching in melanoma by Marie R. Webster; Curtis H. Kugel; Ashani T. Weeraratna (244-251).
The outgrowth of metastatic and therapy-resistant subpopulations in cancer remains a critical barrier for the successful treatment of this disease. In melanoma, invasion and proliferation are uncoupled, such that highly proliferative melanoma cells are less likely to be invasive, and vice versa. The transition between each state is likely a dynamic rather than a static, permanent change. This is referred to as “phenotype switching”. Wnt signaling pathways drive phenotypic changes and promote therapy resistance in melanoma, as well as play roles in the modulation of the immune microenvironment. Three Wnt signaling pathways play a role in melanoma progression, canonical (β-catenin dependent), polar cell polarity (PCP), and the Wnt/Ca2 + pathway. Here we summarize phenotype plasticity and its role in therapy resistance and immune evasion. Targeting the Wnt signaling pathways may be an effective way to overcome tumor plasticity in melanoma.
Keywords: Phenotype switching; Melanoma; Wnt signaling; Therapy resistance; Immune microenvironment;