BBA - Reviews on Cancer (v.1785, #1)

Age is the single most important prognostic factor in the development of many cancers. The major reason for this age-dependence is thought to be the progressive accumulation of oncogenic mutations and epigenetic changes. Similarly, mutagens are thought to be carcinogenic primarily by engendering oncogenic mutations. Yet while the accumulation of heritable somatic changes is expected to augment the incidence of oncogenic mutations, a major effect of increased mutation load is reduced fitness. We propose that the fitness of progenitor cell compartments substantially impacts on the selective advantage conferred by particular mutations. We hypothesize that reduced cellular fitness within aged stem cell pools can select for adaptive oncogenic events and thereby promote the initiation of cancer. Thus, certain oncogenic mutations may be adaptive within aged but not young stem cell pools. We further argue that accumulating genetic alterations with age or mutagen exposure might promote cancer not only by causing oncogenic hits within cells but also by leading to eventual reduction in stem cell fitness, which then selects for oncogenic events. Therefore, initial stages of cancer development may not be limited by the incidence of initiating oncogenic changes, but instead by contexts of reduced cellular fitness that select for these changes.
Keywords: Mutation; Evolution; Cancer; Fitness; Bcr-Abl; Aging;

The ErbB growth factor receptor family members are key players in vital physiological and pathological processes. Like other receptor tyrosine kinases, the ErbBs are bi-topic membrane proteins, whose extracellular and intracellular domains are connected by single transmembrane span. In recent years the crystal structures of the extracellular and intracellular domains of some ErbBs have been determined. We integrated the available structural information with phylogenetic, biochemical, biophysical, genetic, and computational data into a suggested model for the regulation and activation of these receptors. According to the model, regulation is maintained by a dynamic equilibrium between monomeric and dimeric states in various conformations. Along this dynamic equilibrium, variations in the points of interactions within the dimers alter the activation state and ligand-binding affinities. The active state was recently shown to be associated with an asymmetric dimer of the kinase domains. That finding enabled us to elucidate, in molecular terms, the directionality observed in the activation process of ErbB heterodimers; it can explain, for example, the preferential activation of ErbB2 by ErbB1 over activation of ErbB1 by ErbB2. Sequence alterations that reverse this directionality lead to aberrant signaling and cancer. Our model also offers molecular interpretations of the effects of various oncogenic alterations that interfere with the regulatory mechanism.
Keywords: ErbB; EGFR; Molecular regulation; Pre-dimer; Functional and structural asymmetry;

The neurofibromatosis 2 (NF2) tumor suppressor protein merlin is commonly mutated in human benign brain tumors. The gene altered in NF2 was located on human chromosome 22q12 in 1993 and the encoded protein named merlin and schwannomin. Merlin has homology to ERM family proteins, ezrin, radixin, and moesin, within the protein 4.1 superfamily. In efforts to determine merlin function several groups have discovered 34 merlin interacting proteins, including ezrin, radixin, moesin, CD44, layilin, paxillin, actin, N-WASP, βII-spectrin, microtubules, TRBP, eIF3c, PIKE, NHERF, MAP, RalGDS, RhoGDI, EG1/magicin, HEI10, HRS, syntenin, caspr/paranodin, DCC, NGB, CRM1/exportin, SCHIP1, MYPT-1-PP1δ, RIβ, PKA, PAK (three types), calpain and Drosophila expanded. Many of the proteins that interact with the merlin N-terminal domain also bind ezrin, while other merlin interacting proteins do not bind other members of the ERM family. Merlin also interacts with itself. This review describes these proteins, their possible roles in NF2, and the resultant hypothesized merlin functions. Review of all of the merlin interacting proteins and functional consequences of losses of these interactions reveals multiple merlin actions in PI3-kinase, MAP kinase and small GTPase signaling pathways that might be targeted to inhibit the proliferation of NF2 tumors.
Keywords: Merlin; Schwannomin; Neurofibromatosis 2; NF2; Interacting protein;

The post-transcriptional roles of WT1, a multifunctional zinc-finger protein by Avril A. Morrison; Rebecca L. Viney; Michael R. Ladomery (55-62).
WT1 was first described in 1990 as a tumour suppressor gene associated with Wilms tumour (nephroblastoma). It encodes a typical transcription factor with four C2–H2 zinc fingers in the C-terminus. However WT1 is surprisingly complex at multiple levels: it is involved in the development of several organ systems; and is both a tumour suppressor and oncogene. Here we review evidence that has accumulated over the past decade to suggest that as well as binding DNA, WT1 also binds mRNA targets via its zinc fingers and interacts with several splice factors. WT1's first reported post-transcriptional function is also reviewed. WT1's complex roles in development and disease now need to be understood in terms of both DNA and mRNA targets.
Keywords: WT1; Zinc-finger protein; mRNA binding protein; mRNP particle; Splice factor; Alternative splicing;

FoxO tumor suppressors and BCR–ABL-induced leukemia: A matter of evasion of apoptosis by Zainab Jagani; Amrik Singh; Roya Khosravi-Far (63-84).
Numerous studies have revealed that the BCR–ABL oncoprotein abnormally engages a multitude of signaling pathways, some of which may be important for its leukemogenic properties. Central to this has been the determination that the tyrosine kinase function of BCR–ABL is mainly responsible for its transforming potential, and can be targeted with small molecule inhibitors, such as imatinib mesylate (Gleevec, STI-571). Despite this apparent success, the development of clinical resistance to imatinib therapy, and the inability of imatinib to eradicate BCR–ABL-positive malignant hematopoietic progenitors demand detailed investigations of additional effector pathways that can be targeted for CML treatment. The promotion of cellular survival via the suppression of apoptotic pathways is a fundamental characteristic of tumor cells that enables resistance to anti-cancer therapies. As substrates of survival kinases such as Akt, the FoxO family of transcription factors, particularly FoxO3a, has emerged as playing an important role in the cell cycle arrest and apoptosis of hematopoietic cells. This review will discuss our current understanding of BCR–ABL signaling with a focus on apoptotic suppressive mechanisms and alternative approaches to CML therapy, as well as the potential for FoxO transcription factors as novel therapeutic targets.
Keywords: Apoptosis; BCR–ABL; CML; FoxO; Imatinib resistance; Proteasomal degradation;