Peptides (v.89, #C)

Feeding recombinant E. coli with GST-mBmKTX fusion protein increases the fecundity and lifespan of Caenorhabditis elegans by Jie Xu; Yajie Jiang; Lu Wan; Qi Wang; Zebo Huang; Yongmei Liu; Yingliang Wu; Zongyun Chen; Xin Liu (1-8).
Scorpion venom could be a useful treatment for a variety of diseases, such as cancer, epilepsy and analgesia. BmKTX is a polypeptide extracts from scorpion venom (PESV), which have attracted much attention from researchers in recent years. mBmKTX is a mutant polypeptide according to the amino acid sequence of BmKTX. We expressed it with the vector pGEX-4T-1 in Escherichia coli, and Caenorhabditis elegans were used as the animal model and fed with the strains. In this study, the expression of pGEX-mBmKTX was analyzed by SDS-PAGE, and GST-mBmKTX purified from pGEX-mBmKTX as a glutathione S-transferase (GST)-tagged fusion protein is approximately 30 kDa. The secondary structure prediction shows that mBmKTX is mainly composed of approximately 13% β-sheet and 86% loop. A food clearance assay and brood size assay indicated that the worms fed pGEX-mBmKTX ate more and had greater fecundity than those fed the empty vector. A lifespan analysis demonstrated that mBmKTX could significantly prolong the lifespan of C. elegans, with an increase of 22.5% compared with the control. Behavioral assays confirmed that mBmKTX had no influence on the locomotion of C. elegans. In addition, microarray analysis and quantitative real-time PCR demonstrated that there are 320 differentially expressed genes, 182 of which are related to reproduction, growth and lifespan. In conclusion, the data suggested that mBmKTX has potential utility for increasing fecundity and animal survival.
Keywords: mBmKTX; Lifespan; Fecundity; Microarray; C. elegans;

Dynorphin 1–17 is an endogenous peptide that is released at sites of inflammation by leukocytes, binding preferentially to κ-opioid receptors (KOP) to mediate nociception. We have previously shown that dynorphin 1–17 is rapidly biotransformed to smaller peptide fragments in inflamed tissue homogenate. This study aimed to determine the efficacy and potency of selected dynorphin fragments produced in an inflamed environment at the KOP, μ and δ-opioid receptors (MOP and DOP respectively) and in a model of inflammatory pain. Functional activity of Dynorphin 1–17 and fragments (1–6, 1–7 and 1–9) were screened over a range of concentrations against forskolin stimulated human embryonic kidney 293 (HEK) cells stably transfected with one of KOP, MOP or DOP. The analgesic activity of dynorphin 1–7 in a unilateral model of inflammatory pain was subsequently tested. Rats received unilateral intraplantar injections of Freund’s Complete Adjuvant to induce inflammation. After six days rats received either dynorphin 1–7, 1–17 or the selective KOP agonist U50488H and mechanical allodynia determined. Dynorphin 1–7 and 1–9 displayed the greatest activity across all receptor subtypes, while dynorphin 1–7, 1–9 and 1–17 displaying a potent activation of both KOP and DOP evidenced by cAMP inihibition. Administration of dynorphin 1–7 and U50488H, but not dynorphin 1–17 resulted in a significant increase in paw pressure threshold at an equimolar dose suggesting the small peptide dynorphin 1–7 mediates analgesia. These results show that dynorphin fragments produced in an inflamed tissue homogenate have changed activity at the opioid receptors and that dynorphin 1–7 mediates analgesia.
Keywords: Dynorphin; cAMP; Opioid receptors; Anti-nociception; Biotransformation; Inflammation; LCMS;

Synthesis and exploration of novel radiolabeled bombesin peptides for targeting receptor positive tumor by Kakali De; Indranil Banerjee; Samarendu Sinha; Shantanu Ganguly (17-34).
Display OmittedIncreasing evidence of peptide receptor overexpression in various cancer cells, warrant the development of receptor specific radiolabeled peptides for molecular imaging and therapy in nuclear medicine. Gastrin-releasing-peptide (GRP) receptor, are overexpressed in a variety of human cancer cells. The present study report the synthesis and biological evaluation of new bombesin (BBN) analogs, HYNIC-Asp-[Phe13]BBN(7–13)-NH-CH2-CH2-CH3:BA1, HYNIC-Pro-[Tyr13Met14]BBN(7–14)NH2:BA2 as prospective tumor imaging agent with compare to BBN(7–14)NH2:BS as standard. The pharmacophores were radiolabeled in high yields with 99mTc, characterized for their stability in serum and saline, cysteine/histidine and were found to be substantially stable. Internalization/externalization and receptor binding studies were assessed using MDA-MB-231 cells and showed high receptor binding-affinity and favourable internalization. Fluorescence studies revealed that BA1 changed the morphology of the cells and could localize in the nucleus more effectively than BA2/BS. Cell-viability studies displayed substantial antagonistic and nuclear-internalization effect of BA1. BA1 also exhibited antiproliferative effect on MDA-MB-231 cell by inducing apoptosis. In vivo behaviour of the radiopeptides was evaluated in GRP receptor positive tumor bearing mice. The 99mTc-BA1/99mTc-BA2 demonstrated rapid blood/urinary clearance through the renal pathway and comparatively more significant tumor uptake image and favourable tumor-to-non-target ratios provided by 99mTc-BA1. The specificity of the in vivo uptake was confirmed by co-injection with BS. Moreover, 99mTc-BA1 provided a much clearer tumor image in scintigraphic studies than others. Thus the combination of favourable in vitro and in vivo properties renders BA1 as more potential antagonist bombesin-peptide for targeting GRP-receptor positive tumor. These properties are encouraging to carry out further experiments for non-invasive receptor targeting potential diagnostinc and therapeutic agent for tumors.
Keywords: Bombesin; GRP; MDA-MB-231 cell; Radiopeptide; Scintigraphic;

Nesfatin-1 modulates murine gastric vagal afferent mechanosensitivity in a nutritional state dependent manner by Stephen J. Kentish; Hui Li; Claudine L. Frisby; Amanda J. Page (35-41).
Food intake is regulated by vagal afferent signals from the stomach. Nesfatin-1 is an anorexigenic peptide produced within the gastrointestinal tract and has well defined central effects. We aimed to determine if nesfatin-1 can modulate gastric vagal afferent signals in the periphery and further whether this is altered in different nutritional states. Female C57BL/6J mice were fed either a standard laboratory diet (SLD) or a high fat diet (HFD) for 12 weeks or fasted overnight. Plasma nucleobindin-2 (NUCB2; nesfatin-1 precursor)/nesfatin-1 levels were assayed, the expression of NUCB2 in the gastric mucosa and adipose tissue was assessed using real-time quantitative reverse-transcription polymerase chain reaction. An in vitro preparation was used to determine the effect of nesfatin-1 on gastric vagal afferent mechanosensitivity. HFD mice exhibited an increased body weight and adiposity. Plasma NUCB2/nesfatin-1 levels were unchanged between any of the groups of mice. NUCB2 mRNA was detected in the gastric mucosa and gonadal fat of SLD, HFD and fasted mice with no difference in mRNA abundance between groups in either tissue. In SLD and fasted mice nesfatin-1 potentiated mucosal receptor mechanosensitivity, an effect not observed in HFD mice. Tension receptor mechanosensitivity was unaffected by nesfatin-1 in SLD and fasted mice, but was inhibited in HFD mice. In conclusion, Nesfatin-1 modulates gastric vagal afferent mechanosensitivity in a nutritional state dependent manner.
Keywords: Nesfati1; Obesity; Vagal afferents;

Functional interaction between BDNF and mGluR II in vitro: BDNF down-regulated mGluR II gene expression and an mGluR II agonist enhanced BDNF-induced BDNF gene expression in rat cerebral cortical neurons by Shingo Suzuki; Hisatsugu Koshimizu; Naoki Adachi; Hidetada Matsuoka; Satoko Fushimi; Junichiro Ono; Ken-ichi Ohta; Takanori Miki (42-49).
Accumulating evidence suggests functional interaction between brain-derived neurotrophic factor (BDNF) and metabotropic glutamate receptor (mGluR) signaling pathways in the central nervous system (CNS). To date, eight subtypes of mGluRs, mGluR1–8, have been identified, and a previous study suggested that BDNF leads to down-regulation of GluR2 mRNA in rat cerebral cortical cultures. However, precise transcriptomic effects of BDNF on other mGluRs and their cellular significance on the BDNF signaling pathway remain largely unknown. In this study, we assessed the transcriptomic effects of BDNF on mGluR1–8 in primary cultures of rat cerebral cortical neurons, and transcriptomic impacts of mGluR(s) whose expression is regulated by BDNF, on BDNF target genes. Real-time quantitative PCR (RT-qPCR) revealed that stimulation of the cultures with 100 ng/mL BDNF led to marked reductions not only in the gene expression levels of mGluR2, but also in those of mGluR3, both of which belong to group II mGluRs (mGluR II). There were, on the other hand, no changes in the amounts of mGluR I (mGluR1 and 5) and III (mGluR4, 6, 7, and 8) mRNA. Further, 10 ng/mL of BDNF, which mainly activates the high-affinity BDNF receptor, TrkB, but not the low-affinity receptor, p75NTR, was able to induce down-regulation of mGluR II mRNA. The BDNF-induced suppression of mGluR II was not significantly attenuated in the presence of tetrodotoxin (TTX), a blocker for voltage-gated sodium channels. In addition, on stimulation with BDNF (100 ng/mL), no significant down-regulation of mGluR II mRNA was seen in cultured astrocytes, which only express the truncated form of TrkB. Finally, we assessed the transcriptomic effect of mGluR II on the expressions of BDNF target genes, BDNF and activity-regulated cytoskeleton-associated protein (Arc). LY404039, an mGluR II agonist, enhanced the BDNF-induced up-regulation of BDNF, but not Arc. On the other hand, LY341495, an mGluR II antagonist, down-regulated BDNF mRNA levels. Collectively, these observations demonstrated the detailed functional interaction between BDNF and mGluR II: Activation of mGluR II positively regulates self-induced BDNF expression, and, in turn, BDNF negatively regulates the gene expression of mGluR II in a neuronal activity-independent manner, in cortical neurons, but not in astrocytes.
Keywords: BDNF; mGluR2; mGluR3; mGluR II; Cerebral cortical neurons; LY404039;

Trifluoroacetylated tyrosine-rich D-tetrapeptides have potent antioxidant activity by Annamaria Sandomenico; Valeria Severino; Fabio Apone; Adriana De Lucia; Andrea Caporale; Nunzianna Doti; Anna Russo; Rosita Russo; Camilla Rega; Tiziana Del Giacco; Lucia Falcigno; Menotti Ruvo; Angela Chambery (50-59).
Display OmittedThe term “oxidative stress” indicates a set of chemical reactions unleashed by a disparate number of events inducing DNA damage, lipid peroxidation, protein modification and other effects, which are responsible of altering the physiological status of cells or tissues. Excessive Reactive Oxygen Species (ROS) levels may accelerate ageing of tissues or induce damage of biomolecules thus promoting cell death or proliferation in dependence of cell status and of targeted molecules. In this context, new antioxidants preventing such effects may have a relevant role as modulators of cell homeostasis and as therapeutic agents. Following an approach of peptide libraries synthesis and screening by an ORACFL assay, we have isolated potent anti-oxidant compounds with well-defined structures. Most effective peptides are N-terminally trifluoroacetylated (CF3) and have the sequence tyr-tyr-his-pro or tyr-tyr-pro-his. Slight changes in the sequence or removal of the CF3 group strongly reduced antioxidant ability, suggesting an active role of both the fluorine atoms and of peptide structure. We have determined the NMR solution structures of the active peptides and found a common structural motif that could underpin the radical scavenging activity. The peptides protect keratinocytes from exogenous oxidation, thereby from potential external damaging cues, suggesting their use as skin ageing protectant and as cell surviving agents.
Keywords: Antioxidants; Peptide libraries; ORAC assay; Lipid peroxidation;

Synthesis and structure-activity studies on novel analogs of human growth hormone releasing hormone (GHRH) with enhanced inhibitory activities on tumor growth by Marta Zarandi; Renzhi Cai; Magdolna Kovacs; Petra Popovics; Luca Szalontay; Tengjiao Cui; Wei Sha; Miklos Jaszberenyi; Jozsef Varga; XianYang Zhang; Norman L. Block; Ferenc G. Rick; Gabor Halmos; Andrew V. Schally (60-70).
The syntheses and biological evaluations of new GHRH analogs of Miami (MIA) series with greatly increased anticancer activity are described. In the design and synthesis of these analogs, the following previous substitutions were conserved: D-Arg2, Har9, Abu15, and Nle27. Most new analogs had Ala at position 8. Since replacements of both Lys12 and Lys21 with Orn increased resistance against enzymatic degradation, these modifications were kept. The substitutions of Arg at both positions 11 and 20 by His were also conserved. We kept D-Arg28, Har29 –NH2 at the C-terminus or inserted Agm or 12-amino dodecanoic acid amide at position 30. We incorporated pentafluoro-Phe (Fpa5), instead of Cpa, at position 6 and Tyr(Me) at position 10 and ω-amino acids at N-terminus of some analogs. These GHRH analogs were prepared by solid-phase methodology and purified by HPLC. The evaluation of the activity of the analogs on GH release was carried out in vitro on rat pituitaries and in vivo in male rats. Receptor binding affinities were measured in vitro by the competitive binding analysis. The inhibitory activity of the analogs on tumor proliferation in vitro was tested in several human cancer cell lines such as HEC-1A endometrial adenocarcinoma, HCT-15 colorectal adenocarcinoma, and LNCaP prostatic carcinoma. For in vivo tests, various cell lines including PC-3 prostate cancer, HEC-1A endometrial adenocarcinoma, HT diffuse mixed β cell lymphoma, and ACHN renal cell carcinoma cell lines were xenografted into nude mice and treated subcutaneously with GHRH antagonists at doses of 1–5 μg/day. Analogs MIA-602, MIA-604, MIA-610, and MIA-640 showed the highest binding affinities, 30, 58, 48, and 73 times higher respectively, than GHRH (1-29) NH2. Treatment of LNCaP and HCT-15 cells with 5 μM MIA-602 or MIA-690 decreased proliferation by 40%–80%. In accord with previous tests in various human cancer lines, analog MIA-602 showed high inhibitory activity in vivo on growth of PC-3 prostate cancer, HT-mixed β cell lymphoma, HEC-1A endometrial adenocarcinoma and ACHN renal cell carcinoma. Thus, GHRH analogs of the Miami series powerfully suppress tumor growth, but have only a weak endocrine GH inhibitory activity. The suppression of tumor growth could be induced in part by the downregulation of GHRH receptors levels.
Keywords: hGHRH antagonist; Growth hormone releasing hormone; Cancer inhibition; Hypothalamic hormones; Hormone antagonist; SAR studies;

Purification and function of two analgesic and anti-inflammatory peptides from coelomic fluid of the earthworm, Eisenia foetida by Chunlong Li; Mengrou Chen; Xiaojie Li; Meifeng Yang; Ying Wang; Xinwang Yang (71-81).
The potential application of anti-inflammatory and analgesic compounds in medication and therapeutic care have become of increasing interest. We purified and characterized two novel analgesic and anti-inflammatory peptides, VQ-5 and AQ-5, from the coelomic fluid of the earthworm (Eisenia foetida). Their primary structures were determined as VSSVQ and AMADQ, respectively. Both peptides, especially AQ-5, exhibited analgesic activity in mouse models of persistent neuropathic pain and inflammation. AQ-5 also inhibited tumor necrosis factor alpha and cyclooxygenase-2 production. The mitogen-activated protein kinase signaling pathway, which is involved in analgesic and anti-inflammatory functions, was inhibited by AQ-5. Thus, the analgesic and anti-inflammatory effects of these peptides, especially AQ-5, demonstrated their potential as candidates for the development of novel analgesic medicines.
Keywords: Coelomic fluid; Peptide; Analgesic; Anti-inflammation; Eisenia foetida;

Evidences indicate the relationship between neurotensinergic and dopaminergic systems. Neurotensin inhibits synaptosomal membrane Na+, K+-ATPase activity, an effect blocked by SR 48692, antagonist for high affinity neurotensin receptor (NTS1) type. Assays of high affinity [3H]-ouabain binding (to analyze K+ site of Na+, K+-ATPase) show that in vitro addition of neurotensin decreases binding. Herein potential interaction between NTS1 receptor, dopaminergic D2 receptor and Na+, K+-ATPase was studied. To test the involvement of dopaminergic D2 receptors in [3H]-ouabain binding inhibition by neurotensin, Wistar rats were administered i.p.with antipsychotic drugs haloperidol (2 mg/kg) and clozapine (3, 10 and 30 mg/kg). Animals were sacrificed 18 h later, cerebral cortices harvested, membrane fractions prepared and high affinity [3H]-ouabain binding assayed in the absence or presence of neurotensin at a 10 micromolar concentration. No differences versus controls for basal binding or for binding inhibition by neurotensin were recorded, except after 10 mg/kg clozapine. Rats were administered with neurotensin (3, 10 y 30 μg, i.c.v.) and 60 min later, animals were sacrificed, cerebral cortices harvested and processed to obtain membrane fractions for high affinity [3H]-ouabain binding assays. Results showed a slight but statistically significant decrease in binding with the 30 μg neurotensin dose. To analyze the interaction between dopaminergic D2 and NTS1 receptors, [3H]-neurotensin binding to cortical membranes from rats injected with haloperidol (2 mg/kg, i.p.) or clozapine (10 mg/kg) was assayed. Saturation curves and Scatchard transformation showed that the only statistically significant change occurred in Bmax after haloperidol administration. Hill number was close to the unit in all cases. Results indicated that typical and atypical antipsychotic drugs differentially modulate the interaction between neurotensin and Na+, K+-ATPase. At the same time, support the notion of an interaction among dopaminergic and neurotensinergic systems and Na+, K+-ATPase at central synapses.
Keywords: CNS; Antipsychotic agents; Haloperidol; Clozapine; Cerebral cortex; Neurotensin; [3H]-Neurotensin binding; [3H]-Ouabain binding; Na+; K+-ATPase inhibition; Dopamine;