Peptides (v.84, #C)

Evaluation of CART peptide level in rat plasma and CSF: Possible role as a biomarker in opioid addiction by Atefeh Bakhtazad; Nasim Vousooghi; Behzad Garmabi; Mohammad Reza Zarrindast (1-6).
It has been shown previously that cocaine- and amphetamine-regulated transcript (CART) peptide has a modulatory role and homeostatic regulatory effect in motivation to and reward of the drugs of abuse specially psychostimulants. Recent data also showed that in addition to psychostimulants, CART is critically involved in the different stages of opioid addiction. Here we have evaluated the fluctuations in the level of CART peptide in plasma and CSF in different phases of opioid addiction to find out whether CART can serve as a suitable marker in opioid addiction studies. Male rats were randomly distributed in groups of control, acute low-dose (10 mg/kg) morphine, acute high-dose morphine (80 mg/kg), chronic escalating doses of morphine, withdrawal syndrome precipitated by administration of naloxone (1 mg/kg), and abstinent after long-term drug-free maintenance of addicted animals. The level of CART peptide in CSF and plasma samples was measured by enzyme immunoassay. CART peptide concentration in the CSF and plasma was significantly elevated in acute high-dose morphine and withdrawal state animals and down-regulated in addicted rats. In abstinent group, CART peptide level was up-regulated in plasma but not in CSF samples. As the observed results are in agreement with data regarding the CART mRNA and protein expression in the brain reward pathway in opioid addiction phases, it may be suggested that evaluation of CART peptide level in CSF or plasma could be a suitable marker which reflects the rises and falls of the peptide concentration in brain in the development of opioid addiction.
Keywords: Morphine; CART; Addiction; CSF; Plasma; Rat;

Two novel antimicrobial defensins from rice identified by gene coexpression network analyses by Supaluk Tantong; Onanong Pringsulaka; Kamonwan Weerawanich; Arthitaya Meeprasert; Thanyada Rungrotmongkol; Rakrudee Sarnthima; Sittiruk Roytrakul; Supaart Sirikantaramas (7-16).
Defensins form an antimicrobial peptides (AMP) family, and have been widely studied in various plants because of their considerable inhibitory functions. However, their roles in rice (Oryza sativa L.) have not been characterized, even though rice is one of the most important staple crops that is susceptible to damaging infections. Additionally, a previous study identified 598 rice genes encoding cysteine-rich peptides, suggesting there are several uncharacterized AMPs in rice. We performed in silico gene expression and coexpression network analyses of all genes encoding defensin and defensin-like peptides, and determined that OsDEF7 and OsDEF8 are coexpressed with pathogen-responsive genes. Recombinant OsDEF7 and OsDEF8 could form homodimers. They inhibited the growth of the bacteria Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Erwinia carotovora subsp. atroseptica with minimum inhibitory concentration (MIC) ranging from 0.6 to 63 μg/mL. However, these OsDEFs are weakly active against the phytopathogenic fungi Helminthosporium oryzae and Fusarium oxysporum f.sp. cubense. This study describes a useful method for identifying potential plant AMPs with biological activities.
Keywords: Defensin; Rice; Coexpression network analysis; Recombinant peptide production;

High plasma leptin levels are associated with impaired diastolic function in patients with coronary artery disease by V.P. Puurunen; E.S. Lepojärvi; O.P. Piira; P. Hedberg; M.J. Junttila; O. Ukkola; H.V. Huikuri (17-21).
Obese subjects have elevated leptin levels, which have been associated with increased risk of cardiovascular events. Because leptin has direct cellular effects on various tissues, we tested the hypothesis that leptin levels are associated with cardiac structure or function in patients with coronary artery disease (CAD).The study population consisted of 1 601 CAD patients, of whom 42% had type 2 diabetes mellitus. Plasma leptin was measured in fasted state and an echocardiography performed. Leptin levels were not related to LV dimensions or LV ejection fraction (NS for all), but higher leptin levels were associated with elevated E/E’ (9.43 vs. 11.94 in the lowest and the highest leptin quartile, respectively; p = 0.018 for trend). Correspondingly, a decreasing trend was observed in E/A (1.15 vs. 1.06; p = 0.037). These associations were independent of obesity and other relevant confounding variables.We conclude that elevated plasma leptin levels are associated with impaired left ventricular diastolic function in patients with CAD independently of obesity and other confounding variables. Leptin may be one of the mechanistic links explaining the development of congestive heart failure in obese subjects.
Keywords: Coronary artery disease; Diastolic function; Heart failure; Leptin; Obesity;

Wide-field diffuse amacrine cells in the monkey retina contain immunoreactive Cocaine- and Amphetamine-Regulated Transcript (CART) by Ye Long; Andrea S. Bordt; Weiley S. Liu; Elizabeth P. Davis; Stephen J. Lee; Luke Tseng; Alice Z. Chuang; Christopher M. Whitaker; Stephen C. Massey; Michael B. Sherman; David W. Marshak (22-35).
The goals of this study were to localize the neuropeptide Cocaine- and Amphetamine-Regulated Transcript (CART) in primate retinas and to describe the morphology, neurotransmitter content and synaptic connections of the neurons that contain it. Using in situ hybridization, light and electron microscopic immunolabeling, CART was localized to GABAergic amacrine cells in baboon retinas. The CART-positive cells had thin, varicose dendrites that gradually descended through the inner plexiform layer and ramified extensively in the innermost stratum. They resembled two types of wide-field diffuse amacrine cells that had been described previously in macaque retinas using the Golgi method and also A17, serotonin-accumulating and waterfall cells of other mammals. The CART-positive cells received synapses from rod bipolar cell axons and made synapses onto the axons in a reciprocal configuration. The CART-positive cells also received synapses from other amacrine cells. Some of these were located on their primary dendrites, and the presynaptic cells there included dopaminergic amacrine cells. Although some CART-positive somas were localized in the ganglion cell layer, they did not contain the ganglion cell marker RNA binding protein with multiple splicing (RBPMS). Based on these results and electrophysiological studies in other mammals, the CART-positive amacrine cells would be expected to play a major role in the primary rod pathway of primates, providing feedback inhibition to rod bipolar cells.
Keywords: Neuropeptide; Primate; Rod bipolar cell; Reciprocal synapse; GABA;

The influence of intracellular renin on the inward calcium current in isolated smooth muscle cells from SHR mesenteric arteries was investigated. Measurements of calcium current were performed using the whole cell configuration of pCLAMP. The results indicated that: 1) renin (100 nM) dialyzed into smooth muscle cells, increased the inward calcium current; 2) verapamil (10–9 M) administered to the bath inhibited the effect of renin on the inward calcium current; 3) concurrently with the increase of calcium current a depolarization of 6.8 +/− 2.1 mV (n = 16)(P < 0.05) was found in cells dialyzed with renin; 4) intracellular dialysis of renin (100 nM) into smooth muscle cells isolated from mesenteric arteries of normal Wystar Kyoto rats showed no significant change on calcium current; 5) aliskiren (10–9 M) dialyzed into the cell together with renin (100 nM) abolished the effect of the enzyme on the calcium current in SHR; 6) Ang II (100 nM) dialyzed into the smooth muscle cell from mesenteric artery of SHR in absence of renin, decreased the calcium current-an effect greatly reduced by valsartan (10–9 M) added to the cytosol; 7) administration of renin (100 nM) plus angiotensinogen (100 nM) into the cytosol of muscles cells from SHR rats reduced the inward calcium current; 8) extracellular administration of Ang II (100 nM) increased the inward calcium current in mesenteric arteries of SHR. Conclusions: intracellular renin in vascular resistance vessels from SHR due to internalization or expression, contributes to the regulation of vascular tone and control of peripheral resistance-an effect independently of Ang II. Implications for hypertension and vascular remodeling are discussed.
Keywords: Intracellular renin mesenteric artery calcium current vascular tone;

Hydrocarbon stapled B chain analogues of relaxin-3 retain biological activity by Tharindunee Jayakody; Subhi Marwari; Rajamani Lakshminarayanan; Francis Chee Kuan Tan; Charles William Johannes; Brian William Dymock; Anders Poulsen; Deron Raymond Herr; Gavin Stewart Dawe (44-57).
Relaxin-3 or insulin-like peptide 7 (INSL7) is the most recently discovered relaxin/insulin-like family peptide. Mature relaxin-3 consists of an A chain and a B chain held by disulphide bonds. According to structure activity relationship studies, the relaxin-3 B chain is more important in binding and activating the receptor. RXFP3 (also known as Relaxin-3 receptor 1, GPCR 135, somatostatin- and angiotensin- like peptide receptor or SALPR) was identified as the cognate receptor for relaxin-3 by expression profiles and binding studies. Recent studies imply roles of this system in mediating stress and anxiety, feeding, metabolism and cognition. Stapling of peptides is a technique used to develop peptide drugs for otherwise undruggable targets. The main advantages of stapling include, increased activity due to reduced proteolysis, increased affinity to receptors and increased cell permeability. Stable agonists and antagonists of RXFP3 are crucial for understanding the physiological significance of this system. So far, agonists and antagonists of RXFP3 are peptides. In this study, for the first time, we have introduced stapling of the relaxin-3 B chain at 14th and 18th positions (14s18) and 18th and 22nd position (18s22). These stapled peptides showed greater helicity than the unstapled relaxin-3 B chain in circular dichroism analysis. Both stapled peptides bound RXFP3 and activated RXFP3 as observed in an inhibition of forskolin-induced cAMP assay and a ERK1/2 activation assay, although with different potencies. Therefore, we conclude that stapling of the relaxin3 B chain does not compromise its ability to activate RXFP3 and is a promising method for developing stable peptide agonists and antagonists of RXFP3 to aid relaxin-3/RXFP3 research.
Keywords: Relaxin-3; INSL7; RXFP3; Stapled peptide; ERK1/2; cAMP;

Ultrashort cationic lipopeptides and lipopeptoids: Evaluation and mechanistic insights against epithelial cancer cells by Ronald Domalaon; Brandon Findlay; Makanjuola Ogunsina; Gilbert Arthur; Frank Schweizer (58-67).
Peptides present an attractive scaffold for the development of new anticancer lead agents due to their accessibility and ease of modification. Synthetic ultrashort cationic lipopeptides, with four amino acids or less conjugated to a fatty acid, were developed to retain the biological activity of longer peptides in a smaller molecular size. Herein, we report the activity of amphiphilic lipotripeptides, lipotripeptoids and lipotetrapeptides against breast (MDA-MB-231, JIMT-1), prostate (DU145) and pancreas (MiaPaCa2) epithelial cancer cell lines. The lipotripeptide C16-KKK-NH2 and lipotetrapeptide C16-PCatPHexPHexPCat-NH2 were identified to possess anticancer activity. The latter lipotetrapeptide possess a short polyproline scaffold consisting of only two L-4R-aminoproline (PCat) and two L-4R-hexyloxyproline (PHex). However, all the prepared lipotripeptoids lack anticancer activity. The amphiphilic C16-PCatPHexPHexPCat-NH2 exhibited similar anticancer potency to the surfactant benzethonium chloride while superior activity was observed in comparison to myristylamine. Mechanistic studies revealed that the peptides do not lyse ovine erythrocytes nor epithelial cancer cells, thus ruling out necrosis as the mechanism of cell death. Surprisingly, the two lipopeptides exhibit different mechanisms of action that result in cancer cell death. The lipotripeptide C16-KKK-NH2 was found to induce caspase-mediated apoptosis while C16-PCatPHexPHexPCat-NH2 kills tumor cells independent of caspases.
Keywords: Anticancer peptides; Synthetic peptides; Ultrashort peptides; Lipopeptides; Lipopeptoids; Cationic amphiphiles;