BBA - Molecular Cell Research (v.1863, #12)

Erythroid cell mitochondria receive endosomal iron by a “kiss-and-run” mechanism by Amel Hamdi; Tariq M. Roshan; Tanya M. Kahawita; Anne B. Mason; Alex D. Sheftel; Prem Ponka (2859-2867).
In erythroid cells, more than 90% of transferrin-derived iron enters mitochondria where ferrochelatase inserts Fe2 + into protoporphyrin IX. However, the path of iron from endosomes to mitochondrial ferrochelatase remains elusive. The prevailing opinion is that, after its export from endosomes, the redox-active metal spreads into the cytosol and mysteriously finds its way into mitochondria through passive diffusion. In contrast, this study supports the hypothesis that the highly efficient transport of iron toward ferrochelatase in erythroid cells requires a direct interaction between transferrin-endosomes and mitochondria (the “kiss-and-run” hypothesis). Using a novel method (flow sub-cytometry), we analyze lysates of reticulocytes after labeling these organelles with different fluorophores. We have identified a double-labeled population definitively representing endosomes interacting with mitochondria, as demonstrated by confocal microscopy. Moreover, we conclude that this endosome-mitochondrion association is reversible, since a “chase” with unlabeled holotransferrin causes a time-dependent decrease in the size of the double-labeled population. Importantly, the dissociation of endosomes from mitochondria does not occur in the absence of holotransferrin. Additionally, mutated recombinant holotransferrin, that cannot release iron, significantly decreases the uptake of 59Fe by reticulocytes and diminishes 59Fe incorporation into heme. This suggests that endosomes, which are unable to provide iron to mitochondria, cause a “traffic jam” leading to decreased endocytosis of holotransferrin. Altogether, our results suggest that a molecular mechanism exists to coordinate the iron status of endosomal transferrin with its trafficking. Besides its contribution to the field of iron metabolism, this study provides evidence for a new intracellular trafficking pathway of organelles.Display Omitted
Keywords: Iron; Transferrin; Endosomes; Mitochondria; Erythroid cells;

Privileged crosstalk between TRPV1 channels and mitochondrial calcium shuttling machinery controls nociception by Iulia I. Nita; Yaki Caspi; Sagi Gudes; Dimitri Fishman; Shaya Lev; Michal Hersfinkel; Israel Sekler; Alexander M. Binshtok (2868-2880).
The nociceptive noxious heat-activated receptor - TRPV1, conducts calcium and sodium, thus producing a depolarizing receptor potential, leading to activation of nociceptive neurons. TRPV1-mediated calcium and sodium influx is negatively modulated by calcium, via calcium-dependent desensitization of TRPV1 channels. A mitochondrial Ca2 + uniporter - MCU, controls mitochondrial Ca2 + entry while a sodium/calcium transporter - NCLX shapes calcium and sodium transients by mediating sodium entry into and removing calcium from the mitochondria. The functional interplay between TRPV1, MCU and NCLX, in controlling the cytosolic and mitochondrial calcium and sodium transients and subsequently the nociceptive excitability, is poorly understood. Here, we used cytosolic and mitochondrial fluorescent calcium and sodium imaging together with electrophysiological recordings of TRPV1-induced currents in HEK293T cells and nociceptor-like dissociated rat dorsal root ganglion neurons, while modulating NCLX or MCU expression using specific small interfering RNA (siNCLX). We show that the propagation of the TRPV1-induced cytosolic calcium and sodium fluxes into mitochondria is dependent on coordinated activity of NCLX and MCU. Thus, knocking-down of NCLX triggers down regulation of MCU dependent mitochondrial Ca2 + uptake. This in turn decreases rate and amplitude of TRPV1-mediated cytosolic calcium, which inhibits capsaicin-induced inward current and neuronal firing. TRPV1-mediated currents were fully rescued by intracellular inclusion of the fast calcium chelator BAPTA. Finally, NCLX controls capsaicin-induced cell death, by supporting massive mitochondrial Ca2 + shuttling. Altogether, our results suggest that NCLX, by regulating cytosolic and mitochondrial ionic transients, modulates calcium-dependent desensitization of TRPV1 channels, thereby, controlling nociceptive signaling.
Keywords: Nociception; Pain; Capsaicin; Mitochondrial calcium signaling; TRPV1; NCLX;

MicroRNA-455-3p modulates cartilage development and degeneration through modification of histone H3 acetylation by Weishen Chen; Lingwu Chen; Ziji Zhang; Fangang Meng; Guangxin Huang; Puyi Sheng; Zhiqi Zhang; Weiming Liao (2881-2891).
Histone acetylation regulated by class I histone deacetylases (HDACs) plays a pivotal role in matrix-specific gene transcription and cartilage development. While we previously demonstrated that microRNA (miR)-455-3p is upregulated during chondrogenesis and can enhance early chondrogenesis, the mechanism underlying this process remains largely unclear. In this study, we characterized the effect of miR-455-3p on histone H3 acetylation and its role during cartilage development and degeneration. We observed that miR-455-3p was highly expressed in proliferating and pre-hypertrophic chondrocytes, while HDAC2 and HDAC8 were primarily expressed in hypertrophic chondrocytes. Meanwhile, miR-455-3p suppressed the activity of reporter constructs containing the 3′-untranslated regions of HDAC2/8, inhibited HDAC2/8 expression and promoted histone H3 acetylation at the collagen 2 (COL2A1) promoter in human SW1353 chondrocyte-like cells. Treatment with the HDAC inhibitor trichostatin A (TSA) resulted in increased expression of cartilage-specific genes and promoted glycosaminoglycan deposition. Moreover, TSA inhibited matrix metalloproteinase 13 (Mmp13) expression and promoted nuclear translocation of SOX9 in interleukin-1-treated primary mouse chondrocytes. Lastly, knockdown of HDAC2/3/8 increased SRY (sex-determining region Y)-box 9 (SOX9) and decreased Runt-related transcription factor 2 (RUNX2) expression. Taken together, these findings suggest that miR-455-3p plays a critical role during chondrogenesis by directly targeting HDAC2/8 and promoting histone H3 acetylation, which raises possibilities of using miR-455-3p to influence chondrogenesis and cartilage degeneration.
Keywords: miR-455-3p; Class I HDACs; Histone acetylation; Cartilage-specific genes; Chondrogenesis;

Integrin-linked kinase and ELMO2 modulate recycling endosomes in keratinocytes by Ernest Ho; Iordanka A. Ivanova; Lina Dagnino (2892-2904).
The formation of tight cell-cell junctions is essential in the epidermis for its barrier properties. In this tissue, keratinocytes follow a differentiation program tightly associated with their movement from the innermost basal to the outer suprabasal layers, and with changes in their cell-cell adhesion profile. Intercellular adhesion in keratinocytes is mediated through cell-cell contacts, including E-cadherin-based adherens junctions. Although the mechanisms that mediate E-cadherin delivery to the plasma membrane have been widely studied in simple epithelia, this process is less well understood in the stratified epidermis. In this study, we have investigated the role of Engulfment and Cell Motility 2 (ELMO2) and integrin-linked kinase (ILK) in the positioning of E-cadherin-containing recycling endosomes during establishment of cell-cell contacts in differentiating keratinocytes. We now show that induction of keratinocyte differentiation by Ca2 + is accompanied by localization of ELMO2 and ILK to Rab4- and Rab11a-containing recycling endosomes. The positioning of long-loop Rab11a-positive endosomes at areas adjacent to cell-cell contacts is disrupted in ELMO2- or ILK-deficient keratinocytes, and is associated with impaired localization of E-cadherin to cell borders. Our studies show a previously unrecognized role for ELMO2 and ILK in modulation of endosomal positioning, which may play key roles in epidermal sheet maintenance and permeability barrier function.
Keywords: ELMO2; Integrin-linked kinase; Keratinocyte; Rab11; Recycling endosome;

Sensory neuron subpopulations as well as breast and prostate cancer cells express functional transient receptor potential vanilloid type 1 (TRPV1) ion channels; however little is known how TRPV1 activation leads to biological responses. Agonist-induced activation of TRPV1 resulted in specific spatiotemporal patterns of cytoplasmic Ca2+ signals in breast and prostate cancer-derived cells. Capsaicin (CAPS; 50 μM) evoked intracellular Ca2+ oscillations and/or intercellular Ca2+ waves in all cell lines. As evidenced in prostate cancer Du 145 cells, oscillations were largely dependent on the expression of functional TRPV1 channels in the plasma membrane, phospholipase C activation and on the presence of extracellular Ca2+ ions. Concomitant oscillations of the mitochondrial matrix Ca2+ concentration resulted in mitochondria energization evidenced by increased ATP production. CAPS-induced Ca2+ oscillations also occurred in a subset of sensory neurons, yet already at lower CAPS concentrations (1 μM). Stimulation of ectopically expressed TRPV1 channels in CAPS-insensitive NIH-3T3 cells didn't provoke CAPS-triggered Ca2+ oscillations; rather it resulted in low-magnitude, long-lasting elevations of the cytosolic Ca2+ concentration. This indicates that sole TRPV1 activation is not sufficient to generate Ca2+ oscillations. Instead the initial TRPV1-mediated signal leads to the activation of the inositol phospholipid pathway. This in turn suffices to generate a biologically relevant frequency-modulated Ca2+ signal.
Keywords: Ca2+ oscillations; TRPV1; inositol trisphosphate; phospholipase C;

Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor that monitors ATP levels. There is also evidence that AMPK has onco-suppressive properties. Iron plays a crucial role in cellular energy transducing pathways and tumor cell proliferation. Therefore, metals (e.g., iron) could play an important role in the regulation of AMPK-dependent pathways. Hence, this investigation examined the effect of the iron and copper chelator and potent anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), on the AMPK-mediated pathway. These studies demonstrated that Dp44mT, which forms intracellular redox-active complexes with iron and copper, significantly activated AMPK (i.e., p-AMPK/AMPK ratio) in 5 different tumor cell-types. Furthermore, examination of the Dp44mT-metal complexes demonstrated that the effect of Dp44mT on AMPK was due to a dual mechanism: (1) its ability to chelate metal ions; and (2) the generation of reactive oxygen species (ROS). The activation of the AMPK-pathway by Dp44mT was mediated by the upstream kinase, liver kinase B1 (LKB1) that is a known tumor suppressor. Moreover, using AMPKα1-selective silencing, we demonstrated that Dp44mT activated AMPK, resulting in inhibition of acetyl CoA carboxylase 1 (ACC1) and raptor, and activation of Unc-51 like kinase (ULK1). These effects are vital for inhibition of fatty acid synthesis, suppression of protein synthesis and autophagic activation, respectively. Together, this AMPK-mediated repair response aims to rescue the loss of metal ions via chelation and the induction of cytotoxic damage mediated by redox cycling of the Dp44mT-metal ion complex. In conclusion, this study demonstrates for the first time that chelators target the AMPK-dependent pathway.
Keywords: Dp44mT; AMPK; Energy Homeostasis; Molecular Pharmacology; Anticancer Drug;

Cullin9 protects mouse eggs from aneuploidy by controlling microtubule dynamics via Survivin by Xiaoxin Dai; Mianqun Zhang; Yajuan Lu; Yilong Miao; Changyin Zhou; Bo Xiong (2934-2941).
The Cullin9 gene encodes a putative E3 ligase that serves a wide variety of biological functions in mitosis, whereas its roles in meiosis have not yet clearly defined. Here, we report that Cullin9 accumulates on the spindle apparatus and colocalizes with the microtubule fibers during mouse oocyte meiotic maturation. Depletion of Cullin9 by morpholino microinjection results in a remarkably higher rate of disorganized spindles and misaligned chromosomes in oocytes, which is coupled with the impaired kinetochore-microtubule attachments. Resultantly, the incidence of aneuploid eggs significantly increases in Cullin9-depleted oocytes. Moreover, we show that Cullin9 controls Survivin's protein level during meiotic maturation, and thus regulates microtubule stability in oocytes. Thus, our study assigns a new meiotic function to Cullin9 and reveals that it prevents mouse eggs from aneuploidy by regulating microtubule dynamics via Survivin.Display Omitted
Keywords: Cullin9; Spindle assembly; Chromosome alignment; Aneuploid eggs; Microtubule dynamics; Survivin; Mouse oocytes;

Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity—Diverse effects on cell growth, metabolism and cancer by James A. McCubrey; Dariusz Rakus; Agnieszka Gizak; Linda S. Steelman; Steve L. Abrams; Kvin Lertpiriyapong; Timothy L. Fitzgerald; Li V. Yang; Giuseppe Montalto; Melchiorre Cervello; Massimo Libra; Ferdinando Nicoletti; Aurora Scalisi; Francesco Torino; Concettina Fenga; Luca M. Neri; Sandra Marmiroli; Lucio Cocco; Alberto M. Martelli (2942-2976).
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Keywords: GSK-3; Wnt/beta-catenin; PI3K; Akt; mTOR; Hedgehog; Notch; Targeted therapy; Therapy resistance;

Activation of apoptosis signalling pathways by reactive oxygen species by Maureen Redza-Dutordoir; Diana A. Averill-Bates (2977-2992).
Reactive oxygen species (ROS) are short-lived and highly reactive molecules. The generation of ROS in cells exists in equilibrium with a variety of antioxidant defences. At low to modest doses, ROS are considered to be essential for regulation of normal physiological functions involved in development such as cell cycle progression and proliferation, differentiation, migration and cell death. ROS also play an important role in the immune system, maintenance of the redox balance and have been implicated in activation of various cellular signalling pathways. Excess cellular levels of ROS cause damage to proteins, nucleic acids, lipids, membranes and organelles, which can lead to activation of cell death processes such as apoptosis. Apoptosis is a highly regulated process that is essential for the development and survival of multicellular organisms. These organisms often need to discard cells that are superfluous or potentially harmful, having accumulated mutations or become infected by pathogens. Apoptosis features a characteristic set of morphological and biochemical features whereby cells undergo a cascade of self-destruction. Thus, proper regulation of apoptosis is essential for maintaining normal cellular homeostasis. ROS play a central role in cell signalling as well as in regulation of the main pathways of apoptosis mediated by mitochondria, death receptors and the endoplasmic reticulum (ER). This review focuses on current understanding of the role of ROS in each of these three main pathways of apoptosis. The role of ROS in the complex interplay and crosstalk between these different signalling pathways remains to be further unravelled during the coming years.
Keywords: Oxidative stress; Environmental stress; Apoptosis; Mitochondria; Death receptor; Endoplasmic reticulum;

Inhibition of CDK7 bypasses spindle assembly checkpoint via premature cyclin B degradation during oocyte meiosis by HaiYang Wang; Yu-Jin Jo; Tian-Yi Sun; Suk Namgoong; Xiang-Shun Cui; Jeong Su Oh; Nam-Hyung Kim (2993-3000).
To ensure accurate chromosome segregation, the spindle assembly checkpoint (SAC) delays anaphase onset by preventing the premature activation of anaphase-promoting complex/cyclosome (APC/C) until all kinetochores are attached to the spindle. Although an escape from mitosis in the presence of unsatisfied SAC has been shown in several cancer cells, it has not been reported in oocyte meiosis. Here, we show that CDK7 activity is required to prevent a bypass of SAC during meiosis I in mouse oocytes. Inhibition of CDK7 using THZ1 accelerated the first meiosis, leading to chromosome misalignment, lag of chromosomes during chromosome segregation, and a high incidence of aneuploidy. Notably, this acceleration occurred in the presence of SAC proteins including Mad2 and Bub3 at the kinetochores. However, inhibition of APC/C-mediated cyclin B degradation blocked the THZ1-induced premature polar body extrusion. Moreover, chromosomal defects mediated by THZ1 were rescued when anaphase onset was delayed. Collectively, our results show that CDK7 activity is required to prevent premature anaphase onset by suppressing the bypass of SAC, thus ensuring chromosome alignment and proper segregation. These findings reveal new roles of CDK7 in the regulation of meiosis in mammalian oocytes.Display Omitted
Keywords: CDK7; Oocyte; Meiosis; Aneuploidy; Sac; APC/C;

Quinolinic acid neurotoxicity: Differential roles of astrocytes and microglia via FGF-2-mediated signaling in redox-linked cytoskeletal changes by Paula Pierozan; Helena Biasibetti; Felipe Schmitz; Helena Ávila; Mariana M. Parisi; Florencia Barbe-Tuana; Angela T.S. Wyse; Regina Pessoa-Pureur (3001-3014).
QUIN is a glutamate agonist playing a role in the misregulation of the cytoskeleton, which is associated with neurodegeneration in rats. In this study, we focused on microglial activation, FGF2/Erk signaling, gap junctions (GJs), inflammatory parameters and redox imbalance acting on cytoskeletal dynamics of the in QUIN-treated neural cells of rat striatum. FGF-2/Erk signaling was not altered in QUIN-treated primary astrocytes or neurons, however cytoskeleton was disrupted. In co-cultured astrocytes and neurons, QUIN-activated FGF2/Erk signaling prevented the cytoskeleton from remodeling. In mixed cultures (astrocyte, neuron, microglia), QUIN-induced FGF-2 increased level failed to activate Erk and promoted cytoskeletal destabilization. The effects of QUIN in mixed cultures involved redox imbalance upstream of Erk activation. Decreased connexin 43 (Cx43) immunocontent and functional GJs, was also coincident with disruption of the cytoskeleton in primary astrocytes and mixed cultures. We postulate that in interacting astrocytes and neurons the cytoskeleton is preserved against the insult of QUIN by activation of FGF-2/Erk signaling and proper cell-cell interaction through GJs. In mixed cultures, the FGF-2/Erk signaling is blocked by the redox imbalance associated with microglial activation and disturbed cell communication, disrupting the cytoskeleton. Thus, QUIN signal activates differential mechanisms that could stabilize or destabilize the cytoskeleton of striatal astrocytes and neurons in culture, and glial cells play a pivotal role in these responses preserving or disrupting a combination of signaling pathways and cell-cell interactions. Taken together, our findings shed light into the complex role of the active interaction of astrocytes, neurons and microglia in the neurotoxicity of QUIN.
Keywords: Cell signaling; Cytoskeleton; FGF-2; Gap junction; Glial cell; Quinolinic acid;

Altered regulation of the Spry2/Dyrk1A/PP2A triad by homocysteine impairs neural progenitor cell proliferation by Luis G. Rabaneda; Noelia Geribaldi-Doldán; Maribel Murillo-Carretero; Manuel Carrasco; José M. Martínez-Salas; Cristina Verástegui; Carmen Castro (3015-3026).
Hyperhomocysteinemia reduces neurogenesis in the adult mouse brain. Homocysteine (Hcy) inhibits postnatal neural progenitor cell (NPC) proliferation by specifically impairing the fibroblast growth factor receptor (FGFR)-Erk1/2-cyclin E signaling pathway. We demonstrate herein that the inhibition of FGFR-dependent NPC proliferation induced by Hcy is mediated by its capacity to alter the cellular methylation potential. Our results show that this alteration modified the expression pattern and activity of Sprouty2 (Spry2), a negative regulator of the above mentioned pathway. Both elevated concentrations of Hcy and methyltransferase activity inhibition induced Spry2 promoter demethylation in NPC cultures leading to a sustained upregulation of the expression of Spry2 mRNA and protein. In addition, protein levels of two kinases responsible for Spry2 activation/deactivation were altered by Hcy: Spry2 kinase Dyrk1A levels diminished while Spry2 phosphatase PP2A increased, leading to changes in the phosphorylation pattern, activity and stability of Spry2. In conclusion, Hcy inhibits NPC proliferation by indirect mechanisms involving alterations in DNA methylation, gene expression, and Spry2 function, causing FGFR signaling impairment.,Display Omitted
Keywords: neurogenesis; neural progenitor cells; homocysteine; Spry2; Dyrk1A; PP2A;

The poly(ADP-ribosyl)ation of FoxO3 mediated by PARP1 participates in isoproterenol-induced cardiac hypertrophy by Jing Lu; Renwei Zhang; Huiqi Hong; Zuolong Yang; Duanping Sun; Shuya Sun; Xiaolei Guo; Jiantao Ye; Zhuoming Li; Peiqing Liu (3027-3039).
The Forkhead box-containing protein, O subfamily 3 (FoxO3) transcription factor negatively regulates myocardial hypertrophy, and its transcriptional activity is finely conditioned by diverse posttranslational modifications, such as phosphorylation, acetylation, ubiquitination, methylation and glycosylation. Here, we introduce a novel modification of the FoxO3 protein in cardiomyocytes: poly(ADP-ribosyl)ation (PARylation) mediated by poly(ADP-ribose) polymerase-1 (PARP1). This process catalyzes the NAD+-dependent synthesis of polymers of ADP-ribose (PAR) and their subsequent attachment to target proteins by PARPs. Primary-cultured neonatal rat cardiomyocytes were incubated with isoproterenol (ISO) to induce hypertrophy, or were infected with recombinant adenovirus vectors harboring PARP1 cDNA (Ad-PARP1). Sprague-Dawley (SD) rats were treated with ISO to induce cardiac hypertrophy, or were injected with Ad-PARP1 into the anterior and posterior left ventricular walls. Cardiomyocyte surface area, the mRNA expression of hypertrophic biomarkers, echocardiography, morphometry of the hearts were measured. The PARP1 activity was tested by cellular PAR levels. Interactions of PARP1 and FoxO3 were investigated by co-immunoprecipitation and immunofluorescence technique. PARylation of FoxO3 mediated by PARP1 facilitated its phosphorylation at the T32, S252 and S314 sites, triggered its nucleus export and suppressed its transcriptional activity and target genes expression, ultimately inducing cardiac hypertrophy. Additionally, PARP1 silencing or specific inhibition by 3-Aminobenzamide (3AB) and veliparib (ABT-888) alleviated the inhibition of FoxO3 activity by ISO, thus suppressing ISO-induced cardiac hypertrophy. Our data provide the first evidence that PARP1 exacerbates cardiac hypertrophy by PARylation of FoxO3.Display Omitted
Keywords: PARP1; FoxO3; Isoproterenol; Cardiac hypertrophy; Poly(ADP-ribosyl)ation;

Cardiac ankyrin repeat protein attenuates cardiomyocyte apoptosis by upregulation of Bcl-2 expression by Na Zhang; Feiming Ye; Wei Zhu; Dexing Hu; Changchen Xiao; Jinliang Nan; Sheng'an Su; Yingchao Wang; Mingfei Liu; Kanglu Gao; Xinyang Hu; Jinghai Chen; Hong Yu; Xiaojie Xie; Jian'an Wang (3040-3049).
Cardiac ankyrin repeat protein (CARP) is a nuclear transcriptional co-factor that has additional functions in the myoplasm as a component of the muscle sarcomere. Previous studies have demonstrated increased expression of CARP in cardiovascular diseases, however, its role in cardiomyocyte apoptosis is unclear and controversial. In the present study, we investigated possible roles of CARP in hypoxia/reoxygenation (H/R) -induced cardiomyocyte apoptosis and the underlying mechanisms. Neonatal mouse ventricular cardiomyocytes were isolated and infected with adenovirus encoding Flag-tagged CARP (Ad-CARP) and lentivirus encoding CARP targeted shRNA (sh-CARP), respectively. Cardiomyocyte apoptosis induced by exposure to H/R conditions was evaluated by TUNEL staining and western blot analysis of cleaved caspase-3. The results showed that H/R-induced apoptosis was significantly decreased in Ad-CARP cardiomyocytes and increased in sh-CARP cardiomyocytes, suggesting a protective anti-apoptosis role for CARP. Interestingly, over-expressed CARP was mainly distributed in the nucleus, consistent with its role in regulating transcriptional activity. qPCR analysis showed that Bcl-2 transcripts were significantly increased in Ad-CARP cardiomyocytes. ChIP and co-IP assays confirmed the binding of CARP to the Bcl-2 promoter through interaction with transcription factor GATA4. Collectively, our results suggest that CARP can protect against H/R induced cardiomyocyte apoptosis, possibly through increasing anti-apoptosis Bcl-2 gene expression.
Keywords: Cardiac ankyrin repeat protein; Hypoxia/reoxygenation; Cardiomyocyte; Apoptosis; Transcription co-factor; Bcl-2 family;

Inhibition of autophagy sensitises cells to hydrogen peroxide-induced apoptosis: Protective effect of mild thermotolerance acquired at 40 °C by Maureen Redza-Dutordoir; Sarah Kassis; Hou Ve; Mélanie Grondin; Diana A. Averill-Bates (3050-3064).
Various toxic compounds produce reactive oxygen species, resulting in oxidative stress that threatens cellular homeostasis. Yet, lower doses of stress can stimulate defence systems allowing cell survival, whereas intense stress activates cell death pathways such as apoptosis. Mild thermal stress (40 °C, 3 h) induces thermotolerance, an adaptive survival response that renders cells less sensitive to subsequent toxic stress, by activating defence systems like heat shock proteins, antioxidants, anti-apoptotic and ER-stress factors. This study aims to understand how autophagy and apoptosis are regulated in response to different doses of H2O2, and whether mild thermotolerance can protect cervical carcinoma cells against apoptosis by stimulating autophagy. Autophagy was monitored through Beclin-1 and LC3 expression and acid compartment activity, whereas apoptosis was tracked by caspase activity and chromatin condensation. Exposure of HeLa and C33 A cells to H2O2 for shorter times (15–30 min) transiently induced autophagy; apoptosis was activated after longer times (1 − 3 h). Mild thermotolerance at 40 °C enhanced activation of autophagy by H2O2. Disruption of autophagy using bafilomycin A1 and 3-methyladenine sensitised cells to apoptosis induced by H2O2, in non-thermotolerant cells and, to a lesser extent, in thermotolerant cells. Inhibition of autophagy enhanced apoptosis through the mitochondrial, death receptor and endoplasmic reticulum pathways. Autophagy was activated by lower doses of stress and protects cells against apoptosis induced by higher doses of H2O2. This work improves understanding of mechanisms that might be involved in toxicity of various compounds and could eventually lead to protective strategies against deleterious effects of toxic compounds.
Keywords: Oxidative stress; Thermotolerance; Hormesis; Caspase; Autophagy;

Health and homoeostasis are maintained by a dynamic balance between mitochondrial fission and fusion. Mitochondrial fusion machinery is largely unknown in mammals. Only a few reports have illustrated the role of Fzo1 in mitochondrial fusion known in Saccharomyces cerevisiae. We demonstrate that the ubiquitin ligase Mahogunin Ring Finger-1 (MGRN1) interacts with and constitutively ubiquitinates the mammalian homolog, Mitofusin1 (Mfn1) via K63 linkages. In mice models, loss of Mgrn1 function leads to severe developmental defects and adult-onset spongiform neurodegeneration, similar to prion diseases. The tethering of mitochondria to form the ~ 180 kDa Mfn1 complex is independent of MGRN1-mediated ubiquitination. However, successful mitochondrial fusion requires formation of higher oligomers of Mfn1 which in turn needs GTPase activity, intact heptad repeats of Mfn1 and ubiquitination by MGRN1. Following ubiquitination, proteasomal processing of Mfn1 completes the mitochondrial fusion process. This step requires functional p97 activity. These findings suggest a sequence of events where GTPase activity of Mfn1 and tethering of adjacent mitochondria precedes its MGRN1-mediated ubiquitination and proteasomal degradation culminating in mitochondrial fusion.
Keywords: Mfn1; MGRN1; Mitochondria; Ubiquitination; Fusion;

Biased signalling is an essential feature of TLR4 in glioma cells by Marie-Theres Zeuner; Carmen L Krüger; Katharina Volk; Karen Bieback; Graeme S Cottrell; Mike Heilemann; Darius Widera (3084-3095).
A distinct feature of the Toll-like receptor 4 (TLR4) is its ability to trigger both MyD88-dependent and MyD88-independent signalling, culminating in activation of pro-inflammatory NF-κB and/or the antiviral IRF3. Although TLR4 agonists (lipopolysaccharides; LPSs) derived from different bacterial species have different endotoxic activity, the impact of LPS chemotype on the downstream signalling is not fully understood. Notably, different TLR4 agonists exhibit anti-tumoural activity in animal models of glioma, but the underlying molecular mechanisms are largely unknown.Thus, we investigated the impact of LPS chemotype on the signalling events in the human glioma cell line U251. We found that LPS of Escherichia coli origin (LPSEC) leads to NF-κB-biased downstream signalling compared to Salmonella minnesota-derived LPS (LPSSM). Exposure of U251 cells to LPSEC resulted in faster nuclear translocation of the NF-κB subunit p65, higher NF-κB-activity and expression of its targets genes, and higher amount of secreted IL-6 compared to LPSSM. Using super-resolution microscopy we showed that the biased agonism of TLR4 in glioma cells is neither a result of differential regulation of receptor density nor of formation of higher order oligomers. Consistent with previous reports, LPSEC-mediated NF-κB activation led to significantly increased U251 proliferation, whereas LPSSM-induced IRF3 activity negatively influenced their invasiveness. Finally, treatment with methyl-β-cyclodextrin (MCD) selectively increased LPSSM-induced nuclear translocation of p65 and NF-κB activity without affecting IRF3.Our data may explain how TLR4 agonists differently affect glioma cell proliferation and migration.
Keywords: TLR4; LPS; NF-kappaB; IRF3; Inflammatory balance; Biased agonism;

Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies.Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired.Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB.
Keywords: Embryonic stem cells; Mechanical strain; Vasculogenesis; Intracellular calcium; Reactive oxygen species; Nitric oxide;

PTEN is a tumor suppressor gene characterized as a phosphatase that antagonizes the phosphatidylinositol 3-kinase signaling pathway in the cytoplasm. Nuclear PTEN plays roles in chromosomal stability, in which the double-strand breaks (DSB) repair mediated by homologous recombination (HR) and non-homologous end joining (NHEJ) is critical. Herein, the role of nuclear PTEN in DSB repair and the underlying molecular mechanism was investigated in this study. Using human breast cancer BT549 and MDA-MB-231 cell lines, we reveal a specific feature of PTEN that controls poly(ADP-ribosyl)ation of Ku70 and interferes with binding of Ku70 at DSB. Plasmid-based end joining and reporter assays showed that nuclear PTEN restrained NHEJ efficacy. Electrophoretic mobility shift assays showed that nuclear PTEN impaired Ku70 complex binding to DSB by 3-fold. Co-immunoprecipitation assay showed PTEN regulated poly(ADP-ribosyl)ation of Ku70 instead of directly interacting with Ku70, while PTEN promoted the poly(ADP-ribosyl)ation of PARP1 and induced the degradation of PARP1 in PTEN-WT cells exposed to DSB agents. Of note, the role of PTEN in DSB repair mostly depends on its nuclear localization rather than its phosphatase activity. As a result, the absence of nuclear PTEN rather than phosphatase-negative PTEN confers cell hypersensitivity to anti-tumor DNA damage drugs. This finding contributes to understanding the effect of PTEN in repair of DSB and using defined anti-tumor DSB drugs to treat tumor cells with aberrant PTEN.Display Omitted
Keywords: PTEN; Double-strand breaks; Non-homologous end-joining; Homologous recombination; Ku70; Poly(ADP-ribosyl)ation;

Proofreading of substrate structure by the Twin-Arginine Translocase is highly dependent on substrate conformational flexibility but surprisingly tolerant of surface charge and hydrophobicity changes by Alexander S. Jones; James I. Austerberry; Rana Dajani; Jim Warwicker; Robin Curtis; Jeremy P. Derrick; Colin Robinson (3116-3124).
The Tat system transports folded proteins across the bacterial plasma membrane, and in Escherichia coli preferentially transports correctly-folded proteins. Little is known of the mechanism by which Tat proofreads a substrate's conformational state, and in this study we have addressed this question using a heterologous single-chain variable fragment (scFv) with a defined structure. We introduced mutations to surface residues while leaving the folded structure intact, and also tested the importance of conformational flexibility. We show that while the scFv is stably folded and active in the reduced form, formation of the 2 intra-domain disulphide bonds enhances Tat-dependent export 10-fold, indicating Tat senses the conformational flexibility and preferentially exports the more rigid structure. We further show that a 26-residue unstructured tail at the C-terminus blocks export, suggesting that even this short sequence can be sensed by the proofreading system. In contrast, the Tat system can tolerate significant changes in charge or hydrophobicity on the scFv surface; substitution of uncharged residues by up to 3 Lys-Glu pairs has little effect, as has the introduction of up to 5 Lys or Glu residues in a confined domain, or the introduction of a patch of 4 to 6 Leu residues in a hydrophilic region. We propose that the proofreading system has evolved to sense conformational flexibility and detect even very transiently-exposed internal regions, or the presence of unfolded peptide sections. In contrast, it tolerates major changes in surface charge or hydrophobicity.
Keywords: Tat; Twin-Arginine Translocase; Signal peptide; Protein translocation;

Cytoplasmic RNA decay pathways - Enzymes and mechanisms by Anna Łabno; Rafał Tomecki; Andrzej Dziembowski (3125-3147).
RNA decay plays a crucial role in post-transcriptional regulation of gene expression. Work conducted over the last decades has defined the major mRNA decay pathways, as well as enzymes and their cofactors responsible for these processes. In contrast, our knowledge of the mechanisms of degradation of non-protein coding RNA species is more fragmentary. This review is focused on the cytoplasmic pathways of mRNA and ncRNA degradation in eukaryotes. The major 3′ to 5′ and 5′ to 3′ mRNA decay pathways are described with emphasis on the mechanisms of their activation by the deprotection of RNA ends. More recently discovered 3′-end modifications such as uridylation, and their relevance to cytoplasmic mRNA decay in various model organisms, are also discussed. Finally, we provide up-to-date findings concerning various pathways of non-coding RNA decay in the cytoplasm.
Keywords: Exosome; Xrn1; Decapping; Uridylation; mRNA decay; ncRNA;

Yersinia YopJ negatively regulates IRF3-mediated antibacterial response through disruption of STING-mediated cytosolic DNA signaling by Ye Cao; Kai Guan; Xiang He; Congwen Wei; Zirui Zheng; Yanhong Zhang; Shengli Ma; Hui Zhong; Wei Shi (3148-3159).
The Yersinia outer protein J (YopJ) plays a pivotal role in evading the host immune response and establishes a persistent infection in host cells after bacterial infection. YopJ is a cysteine protease and can act as a deubiquitinating enzyme that deubiquitinates several targets in multiple signaling pathways. Stimulator of interferon genes (STING) is a critical adapter for the induction of interferon regulatory factor 3 (IRF3) phosphorylation and subsequent production of the cytokines in response to nucleic acids in the cytoplasm. Our studies demonstrate that YopJ targets STING to inhibit IRF3 signaling. Specially, YopJ interacts with STING to block its ER-to-Golgi traffic and remove its K63-linked ubiquitination chains. Deubiquited STING perturbs the formation of STING-TBK1 complex and the activation of IRF3. The 172th cysteine of YopJ mediated STING deubiquitination and IRF3 signaling inhibition. Consequently, mice infected with WT and ΔYopJ/YopJ bacteria induced lower levels of IRF3 and IFN-β, decreased inflammation and reduced staining of STING as compared to ΔYopJ and ΔYopJ/YopJ C172A strains infection. The data herein reveal a previously unrecognized mechanism by which YopJ modulates innate immune signaling.
Keywords: Yop J; STING; Deubiquitination; IRF3; IFN-β;

SAGA complex and Gcn5 are necessary for respiration in budding yeast by Claudia Canzonetta; Manuela Leo; Salvatore Rocco Guarino; Arianna Montanari; Silvia Francisci; Patrizia Filetici (3160-3168).
In budding yeast, growth through fermentation and/or respiration is dependent on the type of carbon source present in the medium. SAGA complex is the main acetylation complex and is required, together with Rtg factors, for nucleus-mitochondria communication and transcriptional activation of specific nuclear genes. Even though acetylation is necessary for mitochondria activity and respiratory pathways the direct role of histone acetyltransferases and SAGA complex has never been investigated directly. In this study we demonstrate, for the first time, that Gcn5 and SAGA are needed for respiratory metabolism and oxygen consumption. According to a central role for acetylation in respiration we find that the Gcn5 inhibitor CPTH2 had higher efficacy on cells grown in glycerol containing media. We also demonstrated that the opposing activities of Gcn5 and Hda1 modify selectively H3-AcK18 and are essential for respiration. Taken together our results suggest a novel paradigm coupling acetyltransferase activity to respiratory metabolism. Correspondingly we propose the selective utilization of KAT inhibitor CPTH2, combined to the modulation of the respiratory metabolism of the cell, as a promising novel tool of intervention in cancer cells.
Keywords: SAGA complex; Gcn5; Hda1; Acetylation; Respiration; Carbon source; Yeast;

Corrigendum to “The transport mechanism of the mitochondrial ADP/ATP carrier” [Biochim. Biophys. Acta 1863/10 (2016) 2379–2393] by Edmund R.S. Kunji; Antoniya Aleksandrova; Martin S. King; Homa Majd; Valerie L. Ashton; Elizabeth Cerson; Roger Springett; Mikhail Kibalchenko; Sotiria Tavoulari; Paul G. Crichton; Jonathan J. Ruprecht (3169).