BBA - Molecular Cell Research (v.1843, #8)

Preface to special issue on protein trafficking and secretion in bacteria by Anastassios Economou; Ross E. Dalbey (1427).

Protein transport by the bacterial Tat pathway by Roshani Patel; Sarah M. Smith; Colin Robinson (1620-1628).
The twin-arginine translocation (Tat) system accomplishes the remarkable feat of translocating large – even dimeric – proteins across tightly sealed energy-transducing membranes. All of the available evidence indicates that it is unique in terms of both structure and mechanism; however its very nature has hindered efforts to probe the core translocation events. At the heart of the problem is the fact that two large sub-complexes are believed to coalesce to form the active translocon, and ‘capturing’ this translocation event has been too difficult. Nevertheless, studies on the individual components have come a long way in recent years, and structural studies have reached the point where educated guesses can be made concerning the most interesting aspects of Tat. In this article we review these studies and the emerging ideas in this field. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Keywords: Tat; Twin arginine; Protein secretion; Signal peptide; Secretory pathway;

The Type 1 secretion pathway — The hemolysin system and beyond by Sabrina Thomas; I. Barry Holland; Lutz Schmitt (1629-1641).
Type 1 secretion systems (T1SS) are wide-spread among Gram-negative bacteria. An important example is the secretion of the hemolytic toxin HlyA from uropathogenic strains. Secretion is achieved in a single step directly from the cytosol to the extracellular space. The translocation machinery is composed of three indispensable membrane proteins, two in the inner membrane, and the third in the outer membrane. The inner membrane proteins belong to the ABC transporter and membrane fusion protein families (MFPs), respectively, while the outer membrane component is a porin-like protein. Assembly of the three proteins is triggered by accumulation of the transport substrate (HlyA) in the cytoplasm, to form a continuous channel from the inner membrane, bridging the periplasm and finally to the exterior. Interestingly, the majority of substrates of T1SS contain all the information necessary for targeting the polypeptide to the translocation channel — a specific sequence at the extreme C-terminus. Here, we summarize our current knowledge of regulation, channel assembly, translocation of substrates, and in the case of the HlyA toxin, its interaction with host membranes. We try to provide a complete picture of structure function of the components of the translocation channel and their interaction with the substrate. Although we will place the emphasis on the paradigm of Type 1 secretion systems, the hemolysin A secretion machinery from E. coli, we also cover as completely as possible current knowledge of other examples of these fascinating translocation systems. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Keywords: Type I secretion systems; ABC transporter; Membrane fusion proteins; Host pathogen interaction; Protein interaction;

For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly–disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Keywords: Bacterial flagellum; Flagellar assembly; Type III protein export; ATPase; Chaperone; Proton motive force;

Assembly and structure of the T3SS by Brianne J. Burkinshaw; Natalie C.J. Strynadka (1649-1663).
The Type III Secretion System (T3SS) is a multi-mega Dalton apparatus assembled from more than twenty components and is found in many species of animal and plant bacterial pathogens. The T3SS creates a contiguous channel through the bacterial and host membranes, allowing injection of specialized bacterial effector proteins directly to the host cell. In this review, we discuss our current understanding of T3SS assembly and structure, as well as highlight structurally characterized Salmonella effectors. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Keywords: Type 3 secretion; Structural biology; Bacterial secretion; Bacterial pathogenesis;

Architecture and assembly of the Type VI secretion system by Abdelrahim Zoued; Yannick R. Brunet; Eric Durand; Marie-Stéphanie Aschtgen; Laureen Logger; Badreddine Douzi; Laure Journet; Christian Cambillau; Eric Cascales (1664-1673).
The Type VI secretion system (T6SS) delivers protein effectors to diverse cell types including prokaryotic and eukaryotic cells, therefore it participates in inter-bacterial competition and pathogenesis. The T6SS is constituted of an envelope-spanning complex anchoring a cytoplasmic tubular edifice. This tubular structure is evolutionarily, functionally and structurally related to the tail of contractile phages. It is composed of an inner tube tipped by a spike complex, and engulfed within a sheath-like structure. This structure assembles onto a platform called “baseplate” that is connected to the membrane sub-complex. The T6SS functions as a nano-crossbow: upon contraction of the sheath, the inner tube is propelled towards the target cell, allowing effector delivery. This review focuses on the architecture and biogenesis of this fascinating secretion machine, highlighting recent advances regarding the assembly of the membrane or tail complexes. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.Display Omitted
Keywords: Protein transport; Microbial communities; Secretion system; Inter-bacterial interactions; Bacteriophage; Tail; Membrane complex; Hcp; VgrG; Baseplate; Assembly platform;

Selective transport by SecA2: An expanding family of customized motor proteins by Barbara A. Bensing; Ravin Seepersaud; Yihfen T. Yen; Paul M. Sullam (1674-1686).
The SecA2 proteins are a special class of transport-associated ATPases that are related to the SecA component of the general Sec system, and are found in an increasingly large number of Gram-positive bacterial species. The SecA2 substrates are typically linked to the cell wall, but may be lipid-linked, peptidoglycan-linked, or non-covalently associated S-layer proteins. These substrates can have a significant impact on virulence of pathogenic organisms, but may also aid colonization by commensals. The SecA2 orthologues range from being highly similar to their SecA paralogues, to being distinctly different in apparent structure and function. Two broad classes of SecA2 are evident. One transports multiple substrates, and may interact with the general Sec system, or with an as yet unidentified transmembrane channel. The second type transports a single substrate, and is a component of the accessory Sec system, which includes the SecY paralogue SecY2 along with the accessory Sec proteins Asp1-3. Recent studies indicate that the latter three proteins may have a unique role in coordinating post-translational modification of the substrate with transport by SecA2. Comparative functional and phylogenetic analyses suggest that each SecA2 may be uniquely adapted for a specific type of substrate. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Keywords: Accessory Sec system; Glycoprotein transport; Bacterial glycoprotein; Asp1; Asp2; S-layer;

Sec-secretion and sortase-mediated anchoring of proteins in Gram-positive bacteria by Olaf Schneewind; Dominique Missiakas (1687-1697).
Signal peptide-driven secretion of precursor proteins directs polypeptides across the plasma membrane of bacteria. Two pathways, Sec- and SRP-dependent, converge at the SecYEG translocon to thread unfolded precursor proteins across the membrane, whereas folded preproteins are routed via the Tat secretion pathway. Gram-positive bacteria lack an outer membrane and are surrounded by a rigid layer of peptidoglycan. Interactions with their environment are mediated by proteins that are retained in the cell wall, often through covalent attachment to the peptidoglycan. In this review, we describe the mechanisms for both Sec-dependent secretion and sortase-dependent assembly of proteins in the envelope of Gram-positive bacteria. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Keywords: Sec; Leader peptide; LPXTG; Sortase; Cell wall; Peptidoglycan;

The Tat system of Gram-positive bacteria by Vivianne J. Goosens; Carmine G. Monteferrante; Jan Maarten van Dijl (1698-1706).
The twin-arginine protein translocation (Tat) system has a unique ability to translocate folded and co-factor-containing proteins across lipid bilayers. The Tat pathway is present in bacteria, archaea and in the thylakoid membranes of chloroplasts and, depending on the organism and environmental conditions, it can be deemed important for cell survival, virulence or bioproduction. This review provides an overview of the current understanding of the Tat system with specific focus on Gram-positive bacteria. The ‘universal minimal Tat system’ is composed of a TatA and a TatC protein. However, this pathway is more commonly composed of two TatA-like proteins and one TatC protein. Often the TatA-like proteins have diverged to have two different functions and, in this case, the second TatA-like protein is usually referred to as TatB. The correct folding and/or incorporation of co-factors are requirements for translocation, and the known quality control mechanisms are examined in this review. A number of examples of crosstalk between the Tat system and other protein transport systems, such as the Sec–YidC translocon and signal peptidases or sheddases are also discussed. Further, an overview of specific Gram-positive bacterial Tat systems found in monoderm and diderm species is detailed. Altogether, this review highlights the unique features of Gram-positive bacterial Tat systems and pinpoints key questions that remain to be addressed in future research. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Keywords: Bacillus subtilis; EfeB; PhoD; QcrA; YkuE; YwbN;

Take five — Type VII secretion systems of Mycobacteria by Edith N.G. Houben; Konstantin V. Korotkov; Wilbert Bitter (1707-1716).
Mycobacteria use type VII secretion (T7S) systems to secrete proteins across their complex cell envelope. Pathogenic mycobacteria, such as the notorious pathogen Mycobacterium tuberculosis, have up to five of these secretion systems, named ESX-1 to ESX-5. At least three of these secretion systems are essential for mycobacterial virulence and/or viability. Elucidating T7S is therefore essential to understand the success of M. tuberculosis and other pathogenic mycobacteria as pathogens, and could be instrumental to identify novel targets for drug- and vaccine-development. Recently, significant progress has been achieved in the identification of T7S substrates and a general secretion motif. In addition, a start has been made with unraveling the mechanism of secretion and the structural analysis of the different subunits. This review summarizes these recent findings, which are incorporated in a working model of this complex machinery. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Keywords: Protein secretion; Mycobacterium; Secretion signal; Chaperone; Protease;

Colicin import into E. coli cells: A model system for insights into the import mechanisms of bacteriocins by Young Chan Kim; Alexander W. Tarr; Christopher N. Penfold (1717-1731).
Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50 years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein–protein interactions (PPI), protein–lipid interactions and the role of order–disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Keywords: Colicin; Pyocin; Bacteriocin; Protein–protein interactions; Translocation; TolA; TonB;

An endocytosis-like process of protein uptake in the planctomycete Gemmata obscuriglobus is a recently discovered process unprecedented in the bacterial world. The molecular mechanisms underlying this process are not yet characterized. A homolog of the MC (membrane-coating) proteins of eukaryotes has been proposed to be involved in the mechanism of this process, but its relationship to eukaryote proteins is controversial. However, a number of other proteins of G. obscuriglobus with domains homologous to those involved in endocytosis in eukaryotes can also be identified. Here we critically evaluate current bioinformatic knowledge, and suggest practical experimental steps to overcome the limits of bioinformatics in elucidating the molecular mechanism of endocytosis in bacteria. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Keywords: Endocytosis; Planctomycete; Clathrin; Evolution; Membrane; Sterol;

Bacterial-based membrane protein production by Susan Schlegel; Anna Hjelm; Thomas Baumgarten; David Vikström; Jan-Willem de Gier (1739-1749).
Escherichia coli is by far the most widely used bacterial host for the production of membrane proteins. Usually, different strains, culture conditions and production regimes are screened for to design the optimal production process. However, these E. coli-based screening approaches often do not result in satisfactory membrane protein production yields. Recently, it has been shown that (i) E. coli strains with strongly improved membrane protein production characteristics can be engineered or selected for, (ii) many membrane proteins can be efficiently produced in E. coli-based cell-free systems, (iii) bacteria other than E. coli can be used for the efficient production of membrane proteins, and, (iv) membrane protein variants that retain functionality but are produced at higher yields than the wild-type protein can be engineered or selected for. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Keywords: Membrane protein; Bacteria; E. coli; Protein production;

Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans by Jozef Anné; Kristof Vrancken; Lieve Van Mellaert; Jan Van Impe; Kristel Bernaerts (1750-1761).
Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.Display Omitted
Keywords: Streptomyces; Recombinant protein secretion; Strain optimization; Systems biology; Industrial biotechnology;

Antibiotic targeting of the bacterial secretory pathway by Smitha Rao C.V.; Evelien De Waelheyns; Anastassios Economou; Jozef Anné (1762-1783).
Finding new, effective antibiotics is a challenging research area driven by novel approaches required to tackle unconventional targets. In this review we focus on the bacterial protein secretion pathway as a target for eliminating or disarming pathogens. We discuss the latest developments in targeting the Sec-pathway for novel antibiotics focusing on two key components: SecA, the ATP-driven motor protein responsible for driving preproteins across the cytoplasmic membrane and the Type I signal peptidase that is responsible for the removal of the signal peptide allowing the release of the mature protein from the membrane. We take a bird's-eye view of other potential targets in the Sec-pathway as well as other Sec-dependent or Sec-independent protein secretion pathways as targets for the development of novel antibiotics. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.Display Omitted
Keywords: Antibiotic target; Protein secretion inhibitor; Signal peptidase; SecA; Antibiotic resistance;