Analytica Chimica Acta (v.903, #C)

Detection of palytoxin-like compounds by a flow cytometry-based immunoassay supported by functional and analytical methods by María Fraga; Natalia Vilariño; M. Carmen Louzao; Diego A. Fernández; Mark Poli; Luis M. Botana (1-12).
Palytoxin (PLTX) is a complex marine toxin produced by zoanthids (i.e. Palythoa), dinoflagellates (Ostreopsis) and cyanobacteria (Trichodesmium). PLTX outbreaks are usually associated with Indo-Pacific waters, however their recent repeated occurrence in Mediterranean–European Atlantic coasts demonstrate their current worldwide distribution. Human sickness and fatalities have been associated with toxic algal blooms and ingestion of seafood contaminated with PLTX-like molecules. These toxins represent a serious threat to human health. There is an immediate need to develop easy-to-use, rapid detection methods due to the lack of validated protocols for their detection and quantification. We have developed an immuno-detection method for PLTX-like molecules based on the use of microspheres coupled to flow-cytometry detection (Luminex 200™). The assay consisted of the competition between free PLTX-like compounds in solution and PLTX immobilized on the surface of microspheres for binding to a specific monoclonal anti-PLTX antibody. This method displays an IC50 of 1.83 ± 0.21 nM and a dynamic range of 0.47–6.54 nM for PLTX. An easy-to-perform extraction protocol, based on a mixture of methanol and acetate buffer, was applied to spiked mussel samples providing a recovery rate of 104 ± 8% and a range of detection from 374 ± 81 to 4430 ± 150 μg kg−1 when assayed with this method. Extracts of Ostreopsis cf. siamensis and Palythoa tuberculosa were tested and yielded positive results for PLTX-like molecules. However, the data obtained for the coral sample suggested that this antibody did not detect 42-OH-PLTX efficiently. The same samples were further analyzed using a neuroblastoma cytotoxicity assay and UPLC-IT-TOF spectrometry, which also pointed to the presence of PLTX-like compounds. Therefore, this single detection method for PLTX provides a semi-quantitative tool useful for the screening of PLTX-like molecules in different matrixes.Display Omitted
Keywords: Palytoxin; Palytoxin-like molecules; Microsphere-based array; Flow-cytometry system; Screening method;

Analytical characterisation of nanoscale zero-valent iron: A methodological review by L. Chekli; B. Bayatsarmadi; R. Sekine; B. Sarkar; A. Maoz Shen; K.G. Scheckel; W. Skinner; R. Naidu; H.K. Shon; E. Lombi; E. Donner (13-35).
Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their tendency to aggregate. Both the mobility and reactivity of nZVI mainly depends on properties such as particle size, surface chemistry and bulk composition. In order to ensure efficient remediation, it is crucial to accurately assess and understand the implications of these properties before deploying these materials into contaminated environments. Many analytical techniques are now available to determine these parameters and this paper provides a critical review of their usefulness and limitations for nZVI characterisation. These analytical techniques include microscopy and light scattering techniques for the determination of particle size, size distribution and aggregation state, and X-ray techniques for the characterisation of surface chemistry and bulk composition. Example characterisation data derived from commercial nZVI materials is used to further illustrate method strengths and limitations. Finally, some important challenges with respect to the characterisation of nZVI in groundwater samples are discussed.Display Omitted
Keywords: Zero-valent iron nanoparticles; Characterization techniques; Particle size; Surface chemistry; Bulk composition; Groundwater remediation;

Microfluidics for cell-based high throughput screening platforms—A review by Guansheng Du; Qun Fang; Jaap M.J. den Toonder (36-50).
In the last decades, the basic techniques of microfluidics for the study of cells such as cell culture, cell separation, and cell lysis, have been well developed. Based on cell handling techniques, microfluidics has been widely applied in the field of PCR (Polymerase Chain Reaction), immunoassays, organ-on-chip, stem cell research, and analysis and identification of circulating tumor cells. As a major step in drug discovery, high-throughput screening allows rapid analysis of thousands of chemical, biochemical, genetic or pharmacological tests in parallel. In this review, we summarize the application of microfluidics in cell-based high throughput screening. The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode. We also discuss the future development of microfluidic based high throughput screening platform for drug discovery.Display Omitted
Keywords: High throughput screening; Cell-based microfluidics; Drug discovery;

Generalized error-dependent prediction uncertainty in multivariate calibration by Franco Allegrini; Peter D. Wentzell; Alejandro C. Olivieri (51-60).
Most of the current expressions used to calculate figures of merit in multivariate calibration have been derived assuming independent and identically distributed (iid) measurement errors. However, it is well known that this condition is not always valid for real data sets, where the existence of many external factors can lead to correlated and/or heteroscedastic noise structures. In this report, the influence of the deviations from the classical iid paradigm is analyzed in the context of error propagation theory. New expressions have been derived to calculate sample dependent prediction standard errors under different scenarios. These expressions allow for a quantitative study of the influence of the different sources of instrumental error affecting the system under analysis. Significant differences are observed when the prediction error is estimated in each of the studied scenarios using the most popular first-order multivariate algorithms, under both simulated and experimental conditions.Display Omitted
Keywords: Prediction errors; Measurement noise; Multivariate calibration; Error propagation; Heteroscedastic errors; Correlated errors;

The increasing demands for portable, wearable, and implantable sensing devices have stimulated growing interest in innovative electrode materials. In this work, we have demonstrated that printing a conductive ink formulated by blending three-dimensional (3D) porous graphene–carbon nanotube (CNT) assembly with ionic liquid (IL) on two-dimensional (2D) graphene paper (GP), leads to a freestanding GP supported graphene–CNT–IL nanocomposite (graphene–CNT–IL/GP). The incorporation of highly conductive CNTs into graphene assembly effectively increases its surface area and improves its electrical and mechanical properties. The graphene–CNT–IL/GP, as freestanding and flexible substrates, allows for efficient loading of PtAu alloy nanoparticles by means of ultrasonic-electrochemical deposition. Owing to the synergistic effect of PtAu alloy nanoparticles, 3D porous graphene–CNT scaffold, IL binder and 2D flexible GP substrate, the resultant lightweight nanohybrid paper electrode exhibits excellent sensing performances in nonenzymatic electrochemical detection of glucose in terms of sensitivity, selectivity, reproducibility and mechanical properties.Display Omitted
Keywords: Alloy nanoparticle; Graphene; Carbon nanotube; Ionic liquid; Flexible electrode; Nonenzymatic glucose sensor;

In this work, a new nanomaterial of thiol functional ferrocene derivative (Fc-SH) stabilized Au NPs/carbon dots nanocomposite (Au/C NC) coupling with graphene modified glassy carbon electrode (Fc-S-Au/C NC/graphene/GCE) was fabricated to serve as a quadruplet detection platform for ultrasensitive and simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and acetaminophen (AC). The Au/C NC was synthesized by adding HAuCl4 into carbon nanodots solution without using any additional reductant and stabilizing agent. Then the Fc-SH was utilized as the protective and capping agent to modify the Au/C NC. Transmission electron microscopy (TEM), UV–Vis, Fourier-transform infrared (FT-IR), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) were adopted to characterize the morphology and electrochemical properties of the materials and the electrodes. The Fc-S-Au/C NC/graphene/GCE exhibits a synergistic catalytic and amplification effects towards oxidation of AA, DA, UA and AC owing to the existence of the nanomaterial and electron mediator. When simultaneous detection of AA, DA, UA and AC, the oxidation peak potentials of the four compounds on the electrode can be well separated and the peak currents were linearly dependent on their concentrations. The quadruplet detection platform shows excellent linear range and ultrasensitive response to the four components, the detection limits were estimated to be as low as 1.00, 0.05, 0.12 and 0.10 μM (S/N = 3), and the modified electrode exhibits excellent stability and reproducibility. The proposed electrode has been successfully applied to detect of these four analytes in real samples with satisfactory results.Display Omitted
Keywords: Simultaneous determination; Au/C NC; Graphene; Quadruplet detection; Signal amplification;

This contribution presents an experimental approach to improve analytical performance of electromembrane extraction (EME) procedure, which is based on the scrutiny of current pattern under different extraction conditions such as using different organic solvents as supported liquid membrane, electrical potentials, pH values of donor and acceptor phases, variable extraction times, temperatures, stirring rates, different hollow fiber lengths and the addition of salts or organic solvents to the sample matrix. In this study, four basic drugs with different polarities were extracted under different conditions with the corresponding electrical current patterns compared against extraction recoveries. The extraction process was demonstrated in terms of EME-HPLC analyses of selected basic drugs. Comparing the obtained extraction recoveries with the electrical current patterns, most cases exhibited minimum recovery and repeatability at the highest investigated magnitude of electrical current. . It was further found that identical current patterns are associated with repeated extraction efficiencies. In other words, the pattern should be repeated for a successful extraction. The results showed completely different electrical currents under different extraction conditions, so that all variable parameters have contributions into the electrical current pattern. Finally, the current patterns of extractions from wastewater, plasma and urine samples were demonstrated. The results indicated an increase in the electrical current when extracting from complex matrices; this was seen to decrease the extraction efficiency.Display Omitted
Keywords: Electromembrane extraction; Basic drugs; Electrical current variations; Current pattern;

Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves by Tingting Liu; Xiaoyu Sui; Li Li; Jie Zhang; Xin Liang; Wenjing Li; Honglian Zhang; Shuang Fu (91-99).
A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions.Display Omitted
Keywords: Ionic liquid; Ionic liquid based enzyme-assisted extraction (ILEAE); Chlorogenic acid; Cellulase; Eucommia ulmoides;

Dansylation isotope labeling liquid chromatography mass spectrometry for parallel profiling of human urinary and fecal submetabolomes by Xiaoling Su; Nan Wang; Deying Chen; Yunong Li; Yingfeng Lu; Tao Huan; Wei Xu; Liang Li; Lanjuan Li (100-109).
Human urine and feces can be non-invasively collected for metabolomics-based disease biomarker discovery research. Because urinary and fecal metabolomes are thought to be different, analysis of both biospecimens may generate a more comprehensive metabolomic profile that can be better related to the health state of an individual. Herein we describe a method of using differential chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) for parallel metabolomic profiling of urine and feces. Dansylation labeling was used to quantify the amine/phenol submetabolome changes among different samples based on 12C-labeling of individual samples and 13C-labeling of a pooled urine or pooled feces and subsequent analysis of the 13C-/12C-labeled mixture by LC-MS. The pooled urine and pooled feces are further differentially labeled, mixed and then analyzed by LC-MS in order to relate the metabolite concentrations of the common metabolites found in both biospecimens. This method offers a means of direct comparison of urinary and fecal submetabolomes. We evaluated the analytical performance and demonstrated the utility of this method in the analysis of urine and feces collected daily from three healthy individuals for 7 days. On average, 2534 ± 113 (n = 126) peak pairs or metabolites could be detected from a urine sample, while 2507 ± 77 (n = 63) peak pairs were detected from a fecal sample. In total, 5372 unique peak pairs were detected from all the samples combined; 3089 and 3012 pairs were found in urine and feces, respectively. These results reveal that the urine and fecal metabolomes are very different, thereby justifying the consideration of using both biospecimens to increase the probability of finding specific biomarkers of diseases. Furthermore, the CIL LC-MS method described can be used to perform parallel quantitative analysis of urine and feces, resulting in more complete coverage of the human metabolome.Display Omitted
Keywords: Mass spectrometry; Liquid chromatography; Isotope labeling; Urine; Feces; Metabolomics;

Profiling of ornithine lipids in bacterial extracts of Rhodobacter sphaeroides by reversed-phase liquid chromatography with electrospray ionization and multistage mass spectrometry (RPLC-ESI-MSn) by Sara Granafei; Ilario Losito; Massimo Trotta; Francesca Italiano; Vincenzo de Leo; Angela Agostiano; Francesco Palmisano; Tommaso R.I. Cataldi (110-120).
Ornithine lipids (OLs), a sub-group of the large (and of emerging interest) family of lipoamino acids of bacterial origin, contain a 3-hydroxy fatty acyl chain linked via an amide bond to the α-amino group of ornithine and via an ester bond to a second fatty acyl chain. OLs in extracts of Rhodobacter sphaeroides (R. sphaeroides) were investigated by high-performance reversed phase liquid chromatography (RPLC) with electrospray ionization mass spectrometry (ESI-MS) in negative ion mode using a linear ion trap (LIT). The presence of OLs bearing both saturated (i.e, 16:0, 17:0, 18:0, 19:0 and 20:0) and unsaturated chains (i.e., 18:1, 19:1, 19:2 and 20:1) was ascertained and their identification, even for isomeric, low abundance and partially co-eluting species, was achieved by low-energy collision induced dissociation (CID) multistage mass spectrometry (MSn, n = 2–4). OLs signatures found in two R. sphaeroides strains, i.e., wild type 2.4.1 and mutant R26, were examined and up to 16 and 17 different OL species were successfully identified, respectively. OLs in both bacterial strains were characterized by several combinations of fatty chains on ester-linked and amide-linked 3-OH fatty acids. Multistage MS spectra of monoenoic amide-linked 3-OH acyl chains, allowed the identification of positional isomer of OL containing 18:1 (i.e. 9-octadecenoic) and 20:1 (i.e. 11-eicosenoic) fatty acids. The most abundant OL ([M−H] at m/z 717.5) in R. sphaeroides R26 was identified as OL 3-OH 20:1/19:1 (i.e., 3-OH-eicosenoic acid amide-linked to ornithine and esterified to a nonadecenoic chain containing a cyclopropane ring). An unusual OL (m/z 689.5 for the [M−H] ion), most likely containing a cyclopropene ester-linked acyl chain (i.e., OL 3-OH 18:0/19:2), was retrieved only in the carotenoidless mutant strain R26. Based on the biosynthetic pathways already known for cyclopropa(e)ne ring-including acyl chains, a plausible explanation was invoked for the enzymatic generation of this ester-linked chain in R. sphaeroides.Display Omitted
Keywords: Lipoamino acids; Ornithine lipids; Rhodobacter sphaeroides; Liquid chromatography; Monounsaturated fatty acids; Tandem MS;

Analysis of the major chiral compounds of Artemisia herba-alba essential oils (EOs) using reconstructed vibrational circular dichroism (VCD) spectra: En route to a VCD chiral signature of EOs by Mohammed El-Amin Said; Pierre Vanloot; Isabelle Bombarda; Jean-Valère Naubron; El Montassir Dahmane; Ahmed Aamouche; Marion Jean; Nicolas Vanthuyne; Nathalie Dupuy; Christian Roussel (121-130).
An unprecedented methodology was developed to simultaneously assign the relative percentages of the major chiral compounds and their prevailing enantiomeric form in crude essential oils (EOs). In a first step the infrared (IR) and vibrational circular dichroism (VCD) spectra of the crude essential oils were recorded and in a second step they were modelized as a linear weighted combination of the IR and VCD spectra of the individual spectra of pure enantiomer of the major chiral compounds present in the EOs. The VCD spectra of enantiomer of known enantiomeric excess shall be recorded if they are not yet available in a library of VCD spectra. For IR, the spectra of pure enantiomer or racemic mixture can be used. The full spectra modelizations were performed using a well known and powerful mathematical model (least square estimation: LSE) which resulted in a weighting of each contributing compound. For VCD modelization, the absolute value of each weighting represented the percentage of the associate compound while the attached sign addressed the correctness of the enantiomeric form used to build the model. As an example, a model built with the non-prevailing enantiomer will show a negative sign of the weighting value. For IR spectra modelization, the absolute value of each weighting represented the percentage of the compounds without of course accounting for the chirality of the prevailing enantiomers. Comparison of the weighting values issuing from IR and VCD spectra modelizations is a valuable source of information: if they are identical, the EOs are composed of nearly pure enantiomers, if they are different the chiral compounds of the EOs are not in an optically pure form. The method was applied on four samples of essential oil of Artemisia herba-alba in which the three major compounds namely (−)-α-thujone, (+)-β-thujone and (−)-camphor were found in different proportions as determined by GC–MS and chiral HPLC using polarimetric detector. In order to validate the methodology, the modelization of the VCD spectra was performed on purpose using the individual VCD spectra of (−)-α-thujone, (+)-β-thujone and (+)-camphor instead of (−)-camphor. During this work, the absolute configurations of (−)-α-thujone and (+)-β-thujone were confirmed by comparison of experimental and calculated VCD spectra as being (1S,4R,5R) and (1S,4S,5R) respectively.Display Omitted
Keywords: Artemisia herba-alba; Essential oil; Vibrational circular dichroism; Chiral signature; Diastereomers;

Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor by Sze Shin Low; Michelle T.T. Tan; Hwei-San Loh; Poi Sim Khiew; Wee Siong Chiu (131-141).
Graphene/zinc oxide nanocomposite was synthesised via a facile, green and efficient approach consisted of novel liquid phase exfoliation and solvothermal growth for sensing application. Highly pristine graphene was synthesised through mild sonication treatment of graphite in a mixture of ethanol and water at an optimum ratio. The X-ray diffractometry (XRD) affirmed the hydrothermal growth of pure zinc oxide nanoparticles from zinc nitrate hexahydrate precursor. The as-prepared graphene/zinc oxide (G/ZnO) nanocomposite was characterised comprehensively to evaluate its morphology, crystallinity, composition and purity. All results clearly indicate that zinc oxide particles were homogenously distributed on graphene sheets, without any severe aggregation. The electrochemical performance of graphene/zinc oxide nanocomposite-modified screen-printed carbon electrode (SPCE) was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) in a linear range of 1–15 mM with a correlation coefficient of 0.9977. The sensitivity of the graphene/zinc oxide nanocomposite-modified hydrogen peroxide sensor was 3.2580 μAmM−1 with a limit of detection of 7.4357 μM. An electrochemical DNA sensor platform was then fabricated for the detection of Avian Influenza H5 gene based on graphene/zinc oxide nanocomposite. The results obtained from amperometry study indicate that the graphene/zinc oxide nanocomposite-enhanced electrochemical DNA biosensor is significantly more sensitive (P < 0.05) and efficient than the conventional agarose gel electrophoresis.Display Omitted
Keywords: Graphene/zinc oxide nanocomposite; Green approach; Avian influenza virus H5N1; Hydrogen peroxide; Electrochemical DNA biosensor; Screen printed carbon electrode;

In recent years extensive numbers of molecular diagnostic methods have been developed to meet the need of point-of-care devices. Efforts have been made towards producing rapid, simple and inexpensive DNA tests, especially in the diagnostics field. We report on the development of a label-based lateral flow dipstick for the rapid and simple detection of multiplex loop-mediated isothermal amplification (m-LAMP) amplicons. A label-based m-LAMP lateral flow dipstick assay was developed for the simultaneous detection of target DNA template and a LAMP internal control. This biosensor operates through a label based system, in which probe-hybridization and the additional incubation step are eliminated. We demonstrated this m-LAMP assay by detecting pathogenic Leptospira, which causes the re-emerging disease Leptospirosis. The lateral flow dipstick was developed to detect of three targets, the LAMP target amplicon, the LAMP internal control amplicon and a chromatography control. Three lines appeared on the dipstick, indicating positive results for all representative pathogenic Leptospira species, whereas two lines appeared, indicating negative results, for other bacterial species. The specificity of this biosensor assay was 100% when it was tested with 13 representative pathogenic Leptospira species, 2 intermediate Leptospira species, 1 non-pathogenic Leptospira species and 28 other bacteria species. This study found that this DNA biosensor was able to detect DNA at concentrations as low as 3.95 × 10−1 genomic equivalent ml−1. An integrated m-LAMP and label-based lateral flow dipstick was successfully developed, promising simple and rapid visual detection in clinical diagnostics and serving as a point-of-care device.Display Omitted
Keywords: Label-based multiplex loop-mediated isothermal amplification; Lateral flow dipstick; Pathogenic Leptospira; Point-of-care;

Sandwich enzyme-linked immunosorbent assay for naringin by Huihua Qu; Xueqian Wang; Baoping Qu; Hui Kong; Yue Zhang; Wenchao Shan; Jinjun Cheng; Qingguo Wang; Yan Zhao (149-155).
Among the currently used immunoassay techniques, sandwich ELISA exhibits higher specificity, lower cross-reactivity, and a wider working range compared to the corresponding competitive assays. However, it is difficult to obtain a pair of antibodies that can simultaneously bind to two epitopes of a molecule with a molecular weight of less than 1000 Da. Naringin (Nar) is a flavonoid with a molecular mass of 580 Da. The main aim of this study was to develop a sandwich ELISA for detecting Nar. Two hybridomas secreting anti-Nar monoclonal antibodies (mAbs) were produced by fusing splenocytes from a mouse immunised against Nar-bovine serum albumin (BSA) conjugated with a hypoxanthine–aminopterin–thymidine (HAT)-sensitive mouse myeloma cell line; a sandwich ELISA for detecting Nar was developed using these two well-characterised anti-Nar mAbs. The performance of the sandwich assay was further evaluated by limit of detection (LOD), limit of quantification (LOQ), recovery, and interference analyses. A dose-response curve to Nar was obtained with an LOD of 6.78 ng mL−1 and an LOQ of 13.47 ng mL−1. The inter-assay and intra-assay coefficients of variation were 4.32% and 7.48%, respectively. The recovery rate of Nar from concentrated Fructus aurantii granules was 83.63%. A high correlation was obtained between HPLC and sandwich ELISA. These results demonstrate that the sandwich ELISA method has higher specificity for Nar than indirect competitive ELISA.Display Omitted
Keywords: Naringin; Monoclonal antibody; Sandwich enzyme-linked immunosorbent assay;

A chiral porous organic cage for molecular recognition using gas chromatography by Sheng-Ming Xie; Jun-Hui Zhang; Nan Fu; Bang-Jin Wang; Ling Chen; Li-Ming Yuan (156-163).
Molecular organic cages as shape-persistent organic molecules with permanent and accessible cavities have attracted a lot of interest because of their importance as host-guest systems. Herein, we report a chiral porous organic cage (POC) CC9 diluted with a polysiloxane OV-1701 to fabricate a CC9-coated capillary column, which was used for the high-resolution gas chromatographic separation of organic compounds, including positional isomers and racemates. On the CC9-coated capillary column, a large number of racemic compounds such as chiral alcohols, esters, ethers and epoxides can be resolved without derivatization. By comparing the chiral recognition ability of the CC9-coated column with the commercially available β-DEX 120 column and the POC CC3-R coated column recently reported by our group, the CC9-coated column offered good resolution during the separation of some racemates, that were not separated using the β-DEX 120 column or POC CC3-R coated column. Therefore, the CC9-coated column can be complementary to the β-DEX 120 column and CC3-R coated column. The results indicated that the CC9-coated column exhibited great potential for application in the separation of positional isomers and enantiomers with great selectivity, high resolution and good reproducibility.Display Omitted
Keywords: Porous organic cage; Chiral stationary phase; Gas chromatography; Chiral separation; Capillary column;