Analytica Chimica Acta (v.856, #C)

Display OmittedHair analysis of drugs of abuse has been a subject of growing interest from a clinical, social and forensic perspective for years because of the broad time detection window after intake in comparison to urine and blood analysis. Over the last few years, hair analysis has gained increasing attention and recognition for the retrospective investigation of drug abuse in a wide variety of contexts, shown by the large number of applications developed. This review aims to provide an overview of the state of the art and the latest trends used in the literature from 2005 to the present in the analysis of drugs of abuse in hair, with a special focus on separation analytical techniques and their hyphenation with mass spectrometry detection. The most recently introduced sample preparation techniques are also addressed in this paper. The main strengths and weaknesses of all of these approaches are critically discussed by means of relevant applications.
Keywords: Hair analysis; Drug of abuse; Gas chromatography; Liquid chromatography; Capillary electrophoresis; Sample preparation;

Display OmittedMonodispersed and highly stable gold nanoparticles with a diameter between 8 and 9 nm were synthesized in a weakly alkaline medium by chemical reduction of AuCl4 using 5-hydroxyl-1,4-naphthoquinone, and stabilized by the simultaneously formed poly(hydroxyl-1,4-naphthoquinone). The electrochemical properties of the resultant poly(hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles (AuNQ NPs) and its electrocatalytic activity for glucose oxidation in alkaline media were then investigated using a range of techniques, including dc cyclic, rotating disk electrode and Fourier transformed large amplitude ac voltammetry. The results demonstrate that these AuNQ NP modified electrodes exhibit excellent catalytic activity toward glucose oxidation in the potential region where the premonolayer oxidation process occurs. The overall catalytic glucose oxidation process was found to be mass transport controlled under the experimental conditions employed, allowing measurements to be conducted with a high reproducibility. The AuNQ NP modified electrodes showed a high sensitivity of 183 μA mM−1  cm−2 with a wide linear dynamic range of 0.5–50 mM and a detection limit of 61 μM. However, despite its excellent tolerance toward ascorbic acid, significant interference from uric acid was found with this AuNQ NP modified electrode.
Keywords: Nonenzymatic; Gold nanoparticle; Naphthoquinone; Electrochemical; Glucose; Polymer;

In vivo solid phase microextraction sampling of human saliva for non-invasive and on-site monitoring by Vincent Bessonneau; Ezel Boyaci; Malgorzata Maciazek-Jurczyk; Janusz Pawliszyn (35-45).
Display OmittedOn-site sample preparation is an analytical approach based on direct sampling from the system under investigation. It has the advantage of combining sampling and sample preparation into a single step, thus generally is fast, minimizes the potential sources of error and eliminates the risks for analytes instability. For such analysis solid phase microextraction in thin film geometry (TF-SPME) can provide robust and convenient in vivo sampling, offering in the same time faster analysis and higher extraction recovery (i.e., better sensitivity) due to large surface to volume ratio.In this study, TF-SPME in coated blade and membrane formats with a single extraction phase were used for in vivo and ex vivo saliva extraction and separation by LC and GC, respectively. Due to applicability for wide range of polarity of analytes as well as thermal and solvent stability during the desorption, hydrophilic lipophilic balanced particles (HLB) were chosen as extraction phase and used for fast (5 min) in vivo and ex vivo sampling. The results of metabolomic profiling of the saliva are indicating that even 5 min in vivo sampling using TF-SPME followed by GC and LC analyses provides complementary coverage of wide range of analytes with different physical and chemical properties. To demonstrate the applicability of the method for doping analyses, the SPME–LC–MS/MS method was validated for simultaneous quantification of 49 prohibited substances with limit of quantification (LOQ) ranging between 0.004 and 0.98 ng mL−1. Moreover, the method was also validated and successfully applied for determination of endogenous steroids in saliva where the concentrations of the analytes are substantially low. The developed assay offers fast and reliable multiresidue analysis of saliva as an attractive alternative to the standard analysis methods.
Keywords: Saliva; In vivo sampling; Solid-phase microextraction; Doping substances; Steroids;

Evaluation of atmospheric solid analysis probe ionization coupled to ion mobility mass spectrometry for characterization of poly(ether ether ketone) polymers by Emilie Cossoul; Marie Hubert-Roux; Muriel Sebban; Florence Churlaud; Hassan Oulyadi; Carlos Afonso (46-53).
Display OmittedRecently, the interest of the coupling between atmospheric solid analysis probe (ASAP) and ion mobility–mass spectrometry has been revealed in the field of polymers. This method associates a direct ionization technique with a bi-dimensional separation method. Poly(ether ether ketones) (PEEK) belong to the family of the poly(aryl ether ketones) (PAEK) which are high performance aromatic polymers usually used in aerospace, electronics and nuclear industries. PEEK are important commercial thermoplastics with excellent chemical resistance and good mechanical properties. Because of their low solubility, few structural characterization studies of PEEK have been reported. In mass spectrometry, only MALDI-TOF analyses for polymer synthesis monitoring have been described with the use of strong acids such as sulfuric acid. This work demonstrates that ASAP is particularly efficient for analysis of PEEK in a solvent free approach with the production of intact small oligomers (n  ≤ 2). Five types of PEEK oligomers with different end-groups were evidenced. With MALDI-TOF, the same end-groups with almost the same relative abundance were obtained which support the hypothesis that the oligomers detected in ASAP are intact small oligomers and not fragments or pyrolysis products. This is particularly interesting as generally the ASAP analysis of polymers yields pyrolysis products with the loss of end-group information. The end-groups assignments have been confirmed by tandem mass spectrometry (MS/MS) experiments on the M+ • molecular ions, which allowed highlighting some specific neutral or radical losses as well as two diagnostic product ions. Thus, ASAP-IM/MS/MS proves to be a fast and efficient alternative way to characterize low solubility polymers such as PEEK.
Keywords: Poly(ether ether ketone) polymers; Atmospheric solid analysis probe ionization; Mass spectrometry; Ion mobility; Desorption;

Display OmittedConfirmation of suspected residues has been a long time domain of tandem triple quadrupole mass spectrometry (QqQ). The currently most widely used confirmation strategy relies on the use of two selected reaction monitoring signals (SRM). The details of this confirmation procedure are described in detail in the Commission Decision 93/256/EC (CD). On the other hand, high resolution mass spectrometry (HRMS) is nowadays increasingly used for trace analysis. Yet its utility for confirmatory purposes has not been well explored and utilized, since established confirmation strategies like the CD do not yet include rules for modern HRMS technologies.It is the focus of this paper to evaluate the likelihood of false positive and false negative confirmation results, when using a variety of HRMS based measurement modes as compared to conventional QqQ mass spectrometry. The experimental strategy relies on the chromatographic separation of a complex blank sample (bovine liver extract) and the subsequent monitoring of a number of dummy transitions respectively dummy accurate masses. The term “dummy” refers to precursor and derived product ions (based on a realistic neutral loss) whose elemental compositions (CxHyNzOdCle) were produced by a random number generator. Monitoring a large number of such hypothetical SRM’s, or accurate masses inevitably produces a number of mass traces containing chromatographic peaks (false detects) which are caused by eluting matrix compounds. The number and intensity of these peaks were recorded and standardized to permit a comparison among the two employed MS technologies. QqQ performance (compounds which happen to produce a response in two SRM traces at identical retention time) was compared with a number of different HRMS1 and HRMS2 detection based modes. A HRMS confirmation criterion based on two full scans (an unfragmented and an all ion fragmented) was proposed. Compared to the CD criteria, a significantly lower probability of false positive and false negative findings is obtained by utilizing this criterion.
Keywords: High Resolution mass spectrometry; Residue; Confirmation; Commission Decision 93/256/EC; Food safety;

Display OmittedMethane (CH4) is the third most abundant greenhouse gas (GHG) but is vastly understudied in comparison to carbon dioxide. Sources and sinks to the atmosphere vary considerably in estimation, including sources such as fresh and marine water systems. A new method to determine dissolved methane concentrations in discrete water samples has been evaluated. By analyzing an equilibrated headspace using laser cavity ring-down spectroscopy (CRDS), low nanomolar dissolved methane concentrations can be determined with high reproducibility (i.e., 0.13 nM detection limit and typical 4% RSD). While CRDS instruments cost roughly twice that of gas chromatographs (GC) usually used for methane determination, the process presented herein is substantially simpler, faster, and requires fewer materials than GC methods. Typically, 70-mL water samples are equilibrated with an equivalent amount of zero air in plastic syringes. The equilibrated headspace is transferred to a clean, dry syringe and then drawn into a Picarro G2301 CRDS analyzer via the instrument’s pump. We demonstrate that this instrument holds a linear calibration into the sub-ppmv methane concentration range and holds a stable calibration for at least two years. Application of the method to shipboard dissolved methane determination in the northern Gulf of Mexico as well as river water is shown. Concentrations spanning nearly six orders of magnitude have been determined with this method.
Keywords: Methane; Cavity ringdown spectroscopy; Deepwater Horizon; Orca Basin; Gulf of Mexico; Headspace equilibration;

Display OmittedIn this paper we use surface-enhanced Raman spectroscopy (SERS) on 3D metallic structures for label-free detection and characterization of proteins of interest at low concentrations. The substrates are prepared via nanopatterning with latex nano/microparticles and Cr and Ag sputtering, yielding stable, tunable, and mechanically flexible plasmonic structures. The nanovoids generate a SERS signal of the proteins of interest that is background free and independent of the protein charge. Concentrations as low as 0.05 μg mL−1 could be detected for 4 different proteins. The proteins also exhibit significantly different SERS spectra on these substrates, which is an important feature for future label-free direct detection schemes.
Keywords: Protein detection; Surface enhanced Raman spectroscopy; Nanobowls; Label-free;

Doped zinc sulfide quantum dots based phosphorescence turn-off/on probe for detecting histidine in biological fluid by Wei Bian; Fang Wang; Yanli Wei; Li Wang; Qiaoling Liu; Wenjuan Dong; Shaomin Shuang; Martin M.F. Choi (82-89).
Display OmittedWe report a turn-on phosphorescence probe for detection of histidine based on Co2+-adsorbed N-acetyl-l-cysteine (NAC) capped Mn: ZnS quantum dots (QDs) which is directly synthesized by the hydrothermal method. The phosphorescence of NAC-Mn: ZnS QDs is effectively quenched by Co2+ attributing to the adsorption of Co2+ onto the surface of QDs with a concomitant in suppressing the recombination process of hole and electron of QDs. The phosphorescence of Co2+-adsorbed NAC-Mn: ZnS QDs can be recovered by binding of Co2+ with histidine. The quenching and regeneration of the phosphorescence of NAC-Mn: ZnS QDs have been studied in detail. The as-prepared QDs-based probe is applied to determine histidine with a linear range of 1.25–30 μM and a detection limit of 0.74 μM. The relative standard deviation for eleven repeat detections of 20 μM histidine is 0.65%. Co2+-adsorbed NAC-Mn: ZnS QDs show high sensitivity and good selectivity to histidine over other amino acids, metal ions and co-existing substances. The proposed QDs probe has been successfully applied to determination of histidine in human urine samples with good recoveries of 98.5–103%.
Keywords: Doped quantum dots; Histidine; Phosphorescence probe; Biological fluids;

A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity by Hongliang Tan; Qian Li; Zhengchen Zhou; Chanjiao Ma; Yonghai Song; Fugang Xu; Li Wang (90-95).
HKUST-1 as a peroxidase mimic can catalyze the conversion of non-fluorescent thiamine to high fluorescent thiochrome in the presence of H2O2.Display OmittedMetal-organic frameworks (MOFs) with tunable structures and properties have recently been emerged as very interesting functional materials. However, the catalytic properties of MOFs as enzymatic mimics remain to be further investigated. In this work, we for the first time demonstrated the peroxidase-like activity of copper-based MOFs (HKUST-1) by employing thiamine (TH) as a peroxidase substrate. In the presence of H2O2, HKUST-1 can catalyze efficiently the conversion of non-fluorescent TH to strong fluorescent thiochrome. The catalytic activity of HKUST-1 is highly dependent on the temperature, pH and H2O2 concentrations. As a peroxidase mimic, HKUST-1 not only has the features of low cost, high stability and easy preparation, but also follows Michaelis–Menten behaviors and shows stronger affinity to TH than horseradish peroxidase (HRP). Based on the peroxidase-like activity of HKUST-1, a simple and sensitive fluorescent method for TH detection has been developed. As low as 1 μM TH can be detected with a linear range from 4 to 700 μM. The detection limit for TH is about 50 fold lower than that of HRP-based fluorescent assay. The proposed method was successfully applied to detect TH in tablets and urine samples and showed a satisfactory result. We believed that the present work could improve the understanding of catalytic behaviors of MOFs as enzymatic mimics and find out a wider application in bioanalysis.
Keywords: Metal-organic frameworks; Peroxidase-like activity; Thiamine; Fluorescence;

Display OmittedA peroxidase-mimic DNAzyme is a G-quadruplex (G4) DNA–hemin complex, in which the G4-DNA resembles an apoenzyme, and hemin is the cofactor for hydrogen peroxide (H2O2) catalysis. Twenty-one-mer CatG4 is a well-proven G4-DNA as well as a hemin-binding aptamer for constituting a DNAzyme. This work studied if a multivalent DNAzyme with accelerated catalysis could be constructed using a multimeric CatG4 with hemin. We compared CatG4 monomer, dimer, trimer, and tetramer, which were prepared by custom oligo synthesis, for G4 structure formation. According to circular dichroism (CD) analysis, we found that a CatG4 multimer exhibited more active G4 conformation than the sum effect of equal-number CatG4 monomers. However, the DNAzyme kinetics was not improved monotonically along with the subunit number of a multimeric CatG4. It was the trivalent DNAzyme, trimeric CatG4:hemin, resulting in the rapidest H2O2 catalysis instead of a tetravalent one. We discovered that the trivalent DNAzyme’s highest catalytic rate was correlated to its most stable hemin-binding G4 structure, evidenced by CD melting temperature analysis. Finally, a trivalent DNAzyme-based colorimetric glucose assay with a detection limit as low as 10 μM was demonstrated, and this assay did not need adenosine 5′-tri-phosphate disodium salt hydrate (ATP) as a DNAzyme boosting agent.
Keywords: DNAzyme; G-quadruplex DNA; Hemin; Hydrogen peroxide catalysis; Glucose;

Display OmittedAn autonomous DNA nanomachine based on rolling circle amplification (RCA)-bridged two-stage exonuclease III (Exo III)-induced recycling amplification (Exo III-RCA-Exo III) was developed for label-free and highly sensitive homogeneous multi-amplified detection of DNA combined with sensitive fluorescence detection technique. According to the configuration, the analysis of DNA is accomplished by recognizing the target to a unlabeled molecular beacon (UMB) that integrates target-binding and signal transducer within one multifunctional design, followed by the target-binding of UMB in duplex DNA removed stepwise by Exo III accompanied by the releasing of target DNA for the successive hybridization and cleavage process and autonomous generation of the primer that initiate RCA process with a rational designed padlock DNA. The RCA products containing thousands of repeated catalytic sequences catalytically hybridize with a hairpin reporter probe that includes a “caged” inactive G-quadruplex sequence (HGP) and were then detected by Exo III-assisted recycling amplification, liberating the active G-quadruplex and generating remarkable ZnPPIX/G-quadruplex fluorescence signals with the help of zinc(II)-protoporphyrin IX (ZnPPIX). The proposed strategy showed a wide dynamic range over 7 orders of magnitude with a low limit of detection of 0.51 aM. In addition, this designed protocol can discriminate mismatched DNA from perfectly matched target DNA, and holds a great potential for early diagnosis in gene-related diseases.
Keywords: Fluorescence detection; G-quadruplex; Exonuclease III-assisted amplification; Rolling circle amplification; Hairpin DNA probe;