Advances in Colloid and Interface Science (v.238, #C)

The pH-dependent surface charging of metal (hydr)oxides is reviewed on the occasion of the 50th anniversary of the publication by G.A. Parks: “Isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems” in Chemical Reviews. The point of zero charge (PZC) and isoelectric point (IEP) became standard parameters to characterize metal oxides in aqueous dispersions, and they define adsorption (surface excess) of ions, stability against coagulation, rheological properties of dispersions, etc. They are commonly used in many branches of science including mineral processing, soil science, materials science, geochemistry, environmental engineering, and corrosion science. Parks established standard procedures and experimental conditions which are required to obtain reliable and reproducible values of PZC and IEP.The field is very active, and the number of related papers exceeds 300 a year, and the standards established by Parks remain still valid. Relevant experimental techniques improved over the years, especially the measurements of electrophoretic mobility became easier and more reliable, are the numerical values of PZC and IEP compiled by Parks were confirmed by contemporary publications with a few exceptions. The present paper is an up-to-date compilation of the values of PZC and IEP of metal oxides. Unlike in former reviews by the same author, which were more comprehensive, only limited number of selected results are presented and discussed here. On top of the results obtained by means of classical methods (titration and electrokinetic methods), new methods and correlations found over the recent 50 years are presented.Display Omitted

Axisymmetric Drop Shape Analysis (ADSA): An Outline by Sameh M.I. Saad; A. Wilhelm Neumann (62-87).
Drop shape techniques for the measurement of interfacial tension are powerful, versatile and flexible. The shape of the drop/bubble depends on the balance between surface tension and external forces, e.g. gravity. This balance is reflected mathematically in the Laplace equation of capillarity. Axisymmetric Drop Shape Analysis (ADSA) is a commonly used drop shape technique. A streamlined version of the development of ADSA over the past several decades is presented to illustrate its validity and range of utility. Several configurations of interest will be considered and presented systematically. Shape and surface tension will be linked to a shape parameter based on proper concepts of differential geometry. The resulting shape parameter will be shown to allow determination of the range of applicability of such a drop shape method.Display Omitted
Keywords: Drop Shape Techniques; ADSA; Surface Tension Measurements; Laplacian Profiles; Shape Parameter; Total Gaussian Curvature;

Microgels offer robust and facile approaches for surface modification, as well as opportunities to introduce biological functionality by loading such structures with bioactive agents, e.g., in the context of drug delivery, functional biomaterials, and biosensors. As such, they provide a versatile approach for the design of surfaces with pre-determined characteristics compared to more elaborate bottom-up approaches, such as layer-by-layer deposition and surface-initiated polymerization. In the present overview, properties of surface-bound microgels are discussed, ranging from physical adsorption and covalent grafting in dilute systems, to directed self-assembly, multilayer structures, and composites, as well as loading an release of drugs and other cargo molecules into/from such systems, and biomedical applications of these.Display Omitted
Keywords: Biomaterial; Biosensor; Drug delivery; Microgel; Surface-bound;