Advances in Colloid and Interface Science (v.237, #C)

Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides by Gandhali Bapat; Chaitali Labade; Amol Chaudhari; Smita Zinjarde (1-14).
Silica nanoparticles (SiNPs) find applications in the fields of drug delivery, catalysis, immobilization and sensing. Their synthesis can be mediated in a facile manner and they display broad range compatibility and stability. Their existence in the form of spheres, wires and sheets renders them suitable for varied purposes. This review summarizes the use of silica nanostructures in developing techniques for extraction, detection and degradation of pesticides. Silica nanostructures on account of their sorbent properties, porous nature and increased surface area allow effective extraction of pesticides. They can be modified (with ionic liquids, silanes or amines), coated with molecularly imprinted polymers or magnetized to improve the extraction of pesticides. Moreover, they can be altered to increase their sensitivity and stability. In addition to the analysis of pesticides by sophisticated techniques such as High Performance Liquid Chromatography or Gas chromatography, silica nanoparticles related simple detection methods are also proving to be effective. Electrochemical and optical detection based on enzymes (acetylcholinesterase and organophosphate hydrolase) or antibodies have been developed. Pesticide sensors dependent on fluorescence, chemiluminescence or Surface Enhanced Raman Spectroscopic responses are also SiNP based. Moreover, degradative enzymes (organophosphate hydrolases, carboxyesterases and laccases) and bacterial cells that produce recombinant enzymes have been immobilized on SiNPs for mediating pesticide degradation. After immobilization, these systems show increased stability and improved degradation. SiNP are significant in developing systems for effective extraction, detection and degradation of pesticides. SiNPs on account of their chemically inert nature and amenability to surface modifications makes them popular tools for fabricating devices for ‘on-site’ applications.Display Omitted
Keywords: Silica nanoparticles; Pesticides; Extraction; Detection; Degradation;

Superheated nanodrops are a new class of submicron-diameter liquid emulsion particles comprising perfluoropropane (C3F8), perfluorobutane (C4F10) and perfluoropentane (C5F12) that are being developed for ultrasound imaging and therapy. They can be formed by condensation of precursor lipid-coated, gas-filled microbubbles. Application of ultrasound or laser energy triggers the phase transformation back to a vapor bubble, and this process can be exploited for certain biomedical applications. The nanodrops are remarkably metastable in the liquid state under physiological conditions, even though they are highly superheated. In prior work, it was suggested that a high Laplace pressure in the lipid-coated nanodrop is responsible for its stability in the superheated state. Recent work by our group, however, points to the energy barrier for homogeneous nucleation as a more likely explanation. The purpose of this article is to review and discuss this mechanism in greater detail. We start with a brief description of basic fluorocarbon intermolecular forces. We then use the van der Waals equation of state to construct equilibrium phase diagrams and saturation curves. The effect of droplet Laplace pressure is superimposed onto these curves and compared to experimental data, where a poor correlation is observed. It is also shown that nanodrops with Laplace pressure are unstable to dissolution. The mechanism of homogeneous nucleation is then offered as an alternative explanation for the metastability of superheated nanodrops, with calculations that show good agreement with experimental data.Display Omitted
Keywords: Lipid-coated microbubbles; Fluorocarbons; Emulsions; Ultrasound; Condensation; Vaporization;

Heavy metals are dangerous pollutants that in spite of occurring naturally are released in major amounts to the environment due to anthropogenic activities. After being released in the environment, the heavy metals end up in the soils where they accumulate as they do not degrade, adversely affecting the biota. Because of the dynamic equilibria between soil constituents, the heavy metals may be present in different phases such as the solid phase (immobilized contaminants) or dissolved in soil solution. The latter form is the most dangerous because the ions are mobile, can leach and be absorbed by living organisms.Different methods for the decontamination of polluted soils have been proposed and they make use of two different approaches: mobilizing the heavy metals, which allows their removal from soil, or immobilization that maintains the metal concentrations in soils but keeps them in an inert form due to mechanisms like precipitation, complexation or adsorption. Mobilization of the heavy metals is known to cause leaching and increase plant uptake, so this treatment can cause greater problems.Aerogels are incredible nanostructured, lightweight materials with high surface area and tailorable surface chemistry. Their application in environmental cleaning has been increasing in recent years and very promising results have been obtained. The functionalization of the aerogels can give them the ability to interact with heavy metals, retaining the latter via strong adsorptive interactions.Thus, this review surveys the existing literature for remediation of soils using an immobilization approach, i.e. with soil amendments that increase the soil sorption/retention capacity for heavy metals. The considered framework was a set of heavy metals with relevance in polluted Iberian soils, namely Cd, Cr, Cu, Ni, Pb and Zn. Moreover, other adsorbents, especially aerogels, have been used for the removal of these contaminants from aqueous media; because groundwater and soil solution have dynamic equilibria with the soil solid phase, these works allowed to draw conclusions and perspectives for the use of aerogels not only as adsorbents in aqueous media but also as amendments for the remediation of heavy metal polluted soils.Display Omitted
Keywords: Heavy metals; Aerogel adsorbents; Soil remediation; Groundwater; Iberian soils;

Biomacromolecules based core/shell architecture toward biomedical applications by Wei Cui; Anhe Wang; Jie Zhao; Junbai Li (43-51).
Polyelectrolyte multilayer capsules have become a novel and promising class of hybrid materials with great potential since they can be applied in various areas, such as pharmaceutical sciences, biotechnology, and biomedicine. The concept of using such carriers for biology application is diagnosis and treatment of diseases for convenience, safety and specific targeting. Therefore, the development of biocompatible, biodegradable and specific characteristic nanostructure material is highly desirable. Much effort has been devoted to exploring innovative and effective techniques to fabricate such materials. Among the available techniques, layer-by-layer (LbL) assembly capsules have attracted considerable attention attributing to the flexibly controlled size, shape, composition, wall thickness and functions. Protein, as the large class of biomacromolecules, was incorporated into capsules for improving the biocompatibility and specific function. In this review we provide an overview of the recent progress in biomacromolecular capsules or core/shell architecture with different diameters for the variety of purposes. The size ranging from micro-, sub-micro to nano scale based on the choice of the template. Their advantages are discussed here. The applications of these biomacromolecular capsules in biotechnological fields have also been summarized, for instance blood substitute, ATP carriers, photodynamic therapy and nanomedicines.Display Omitted
Keywords: Biomacromolecules; Core/shell architecture; Layer-by-layer assembly; Drug carriers;

This review describes the development of novel lipid-based biomaterials that modulate fat digestion for the enhanced uptake of encapsulated lipophilic bioactive compounds (e.g. drugs and vitamins). Specific focus is directed towards analysing how key material characteristics affect the biological function of digestive lipases and manipulate lipolytic digestion. The mechanism of lipase action is a complex, interfacial process, whereby hydrolysis can be controlled by the ability for lipase to access and adsorb to the lipid-in-water interface. However, significant conjecture exists within the literature regarding parameters that influence the activities of digestive lipases. Important findings from recent investigations that strategically examined the interplay between the interfacial composition of the lipid microenvironment and lipolysis kinetics in simulated biophysical environments are presented. The correlation between lipolysis and the rate of solubilisation and absorption of lipophilic compounds in the gastrointestinal tract (GIT) is detailed. Greater insights into the mechanism of lipase action have provided a new approach for designing colloidal carriers that orally deliver poorly soluble compounds, directly impacting the pharmaceutical and food industries.Display Omitted
Keywords: lipase; lipid digestion; lipolysis; lipid-based drug delivery; nanostructure;