Advances in Colloid and Interface Science (v.176-177, #C)

Foams and antifoams by Stoyan I. Karakashev; Michaela V. Grozdanova (1-17).
Foams and antifoams are two entities with completely different natures. For example, the foams are structures of bubbles in contact, while the antifoams are emulsions containing hydrophobic particles. The interaction between them makes the foam decay faster and in the same time exhausts the antifoam. The mechanism of such an effect is complex of many phenomena taking place in the foam. Thus the antifoams are known as powerful foam suppressors. For these reasons, they are very important from fundamental and practical viewpoints.This paper summarizes the knowledge on antifoams since their very creation till nowadays. In this regard, the review discloses the scientific interpretations on antifoams in chronological order in accord with the literature. Thus, for example it begins with description of the first antifoams (oils) from the 1940s and the pioneering studies of S. Ross and his group. The first physical methods for studying antifoams were presented along with the concepts of spreading and entering coefficients of oils (W. Harkins, 1941, J. Robinson and W. Woods, 1948). The further development of the antifoams (oils + hydrophobic particles) was described by means of the works of R. Kulkarni et al., A. Dippenaar and P. Garrett in the late 1970s and the early 1980s. The theoretical models on the antifoam performance of R. Pelton and P. Garrett, developed in 1980s and 1990s, were presented and analyzed as well in regard with their limits of applicability. Substantial advance on the experimental techniques for studying antifoams has been achieved by introducing different variants of the film trapping technique (FTT) developed by D. Wasan et al., I. Ivanov et al. and T. Tamura et al. in the middle and the late 1990s. An assessment of these techniques was carried out in regard with their capacity for detailed studying the antifoam action within the thin liquid films. Finally, the latest knowledge on the antifoams was achieved due to N. Denkov and his group, who harnessed both the most successful type of FTT and the interferometric thin film setup of Scheludko to conduct innovative experiments on the antifoam's action in the foam films under different conditions. They derived new more detailed understanding on the antifoam's action. For this reason, we must acknowledge the series of works under the supervision of N. Denkov performed between 1996 and 2004 as the lately ones in the field.The present work contains in addition a subchapter devoted to describing alternative methods for design and control of the foam stability. As far as the foaminess and the rate of foam decay depends on the states of the surfactant adsorption layers situated on the bubble surfaces, both foaminess and foam durability can be designed by means of proper choices of surfactants, concentrations and methods of foam generation. Therefore, this paper scrutinized the very mechanism of foam generation whose product is initial foam. Afterwards it was pointed out that the elastic modulus of the foam bubbles is responsible for the further “life” of the already generated foam. A compilation between foaminess and average rate of foam decay named foam production was shown as more successful way to describe the foaming capacity of the frothers. In addition, the properties of tenacious famous under various conditions were exhibited as well. This subchapter does not give any formula for precise design of foams with entailed durability but rather outlines new ways to achieve such recipe.Display Omitted► Development of the knowledge about antifoams ► New trends in designing foams with entailed stability ► Industrial applications
Keywords: Antifoams; Foams; Surfactant adsorption layer; Bubble; Particles; Oils;

Soft matter approaches to food structuring by R.G.M. van der Sman (18-30).
We give an overview of the many opportunities that arise from approaching food structuring from the perspective of soft matter physics. This branch of physics employs concepts that build upon the seminal work of van der Waals, such as free volume, the mean field, and effective temperatures. All these concepts aid scientists in understanding and controlling the thermodynamics and (slow) dynamics of structured foods. We discuss the use of these concepts in four topics, which will also be addressed in a forthcoming Faraday Discussion on food structuring.Display Omitted► More food scientists obtain understanding of food complexity via soft matter physics. ► The work on food is finding recognition in the field of soft matter physics. ► Theoretical approaches, building upon van der Waals work, prove valuable to food.
Keywords: Food; Soft matter physics; Microstructure; Free volume; Effective temperature;