Advances in Colloid and Interface Science (v.149, #1-2)

The first aim of this review is to assess the experimental data available about surface phase transitions at the contact between fluid bulk phases and either their vapour in the case of liquids (free interfaces) or solid substrates in general and to test their “universal” behaviour out of any consideration about critical laws, which constitute a topic by themselves. As, here, the level under consideration is only the microscopic one, wetting transitions are excluded. Our second goal is to compare these experimental data to their description by models, which are far more numerous. This imposed us to privilege, here, Cahn’s and DFT theories because their way of reasoning is very close to classical thermodynamics and so, the discussion of the experimental data under examination here is facilitated with no exclusion of decisive contribution by other kinds of theories. A thorough analysis of available experiments and theoretic works makes layering appear as a general and non-wetting-dependent phenomenon exhibited by simple gases or gas mixtures on solids and also by liquid mixtures. On the other hand, though prewetting is not deeply different in essence, it is fully wetting-dependent. Both phenomena can be found in systems where interactions are very different by nature and, according to very recent models and experiments, the interplay between these interactions may lead to intertwining between both surface phenomena.

To date, microwave energy has been widely developed and applied to almost every field of chemistry. In many cases, microwave technology has proven to remarkably reducing costs, accelerating reaction rates, improving yields and selectively activating. This paper presents a state of art review of microwave technology, its background studies, fundamental chemistry and industrial applications. With the renaissance of activated carbon, there has been a steadily growing interest in this research field. The review provides a summary on recent development in preparation and regeneration of activated carbons. The key advance of introducing microwave energy has been highlighted relative to conventional methods. Moreover, the major drawbacks, challenges with its future expectation are presented and discussed. Conclusively, microwave energy is predicted to be a potentially viable and powerful replacement for fuel technology in various areas, while its progress represents an expanding field in the area of adsorption science.
Keywords: Microwave; Activated carbon; Preparation; Regeneration;

Recently, the polymer modified gold nanoparticles have showed much potential in advanced materials. In this paper, the smart core/shell nanocomposites of intelligent polymers and gold nanoparticles were reviewed from the preparation, properties to potential applications. The main preparative methods were detailed including the direct-synthesis method, “graft-to” strategy, “graft-from” strategy and physical adsorption method, in which the surface-initiated radical polymerization such as atom-transfer radical polymerization and reversible-addition fragmentation chain-transfer radical polymerization displayed several advantages for well-defined nanostructures. The stimuli-responsive property and potential uses of such-fabricated nanocomposites were sorted to thermosensitive, pH responsive and other responsive catalogues to describe more clarified. In application, the combination of gold nanoparticles and intelligent polymers provides a facile path for intelligent materials and might be encouraged to hold enormous chances in biotechnology and nanotechnology.
Keywords: Polymer; Gold; Nanoparticle; Smart;

The majority of work on phase separation of colloidal systems has been concerned with the energy intensive approaches such as ultracentrifugation, solvent evaporation, changes of temperature and pressure etc. However, in modern nanotechnology it is desirable to minimize environmental impact in order to achieve separation and recovery of colloidal products. In this review recent research on phase separation methods, requiring relatively lower energy consumption are summarized. These include polymer-, solvent- and photo-induced approaches to phase separation.
Keywords: Phase separation; Recovery; Nanoparticles; Microemulsions; Photosurfactants;