Advances in Colloid and Interface Science (v.91, #2)

Recent advances in several experimental techniques have enabled detailed structural information to be obtained for floating (Langmuir) monolayers and Langmuir–Blodgett films. These techniques are described briefly and their application to the study of films of fatty acids and their salts is discussed. Floating monolayers on aqueous subphases have been shown to possess a complex polymorphism with phases whose structures may be compared to those of smectic mesophases. However, only those phases that exist at high surface pressures are normally used in Langmuir–Blodgett (LB) deposition. In single LB monolayers of fatty acids and fatty acid salts the acyl chains are in the all-trans conformation with their long axes normal to the substrate. The in-plane molecular packing is hexagonal with long-range bond orientational order and short-range positional order: known as the hexatic-B structure. This structure is found irrespective of the phase of the parent floating monolayer. The structures of multilayer LB films are similar to the structures of their bulk crystals, consisting of stacked bilayer lamellae. Each lamella is formed from two monolayers of fatty acid molecules or ions arranged head to head and held together by hydrogen bonding between pairs of acids or ionic bonding through the divalent cations. With acids the acyl chains are tilted with respect to the substrate normal and have a monoclinic structure, whereas the salts with divalent cations may have the chains normal to the substrate or tilted. The in-plane structures are usually centred rectangular with the chains in the trans conformation and packed in a herringbone pattern. Multilayer films of the acids show only a single-step order–disorder transition at the melting point. This temperature tends to rise as the number of layers increases. Complex changes occur when multilayer films of the salts are heated. Disorder of the chains begins at low temperatures but the arrangement of the head groups does not alter until the melting temperature is reached. Slow heating to a temperature just below the melting temperature gives, with some salts, a radical change in phase. The lamellar structure disappears and a new phase consisting of cylindrical rods lying parallel to the substrate surface and stacked in a hexagonal pattern is formed. In each rod the cations are aligned along the central axis surrounded by the disordered acyl chains.
Keywords: Fatty acids; Langmuir–Blodgett films; Structure determination; Grazing incidence; X-ray diffraction; Monolayers;

Modern physicochemical research on Langmuir monolayers by Patrycja Dynarowicz-Łątka; Anantharaman Dhanabalan; Osvaldo N. Oliveira (221-293).
Recent developments in characterising Langmuir monolayers of a variety of film-forming materials and employing several physicochemical techniques are reviewed. The extension of the LB method to non-amphiphilic substances, especially macromolecular systems, has increased the need of a thorough understanding of Langmuir film properties, which requires characterising techniques that provide complementary information. Since there is vast literature in the subject, only selected examples are given of results that illustrate the potential of the techniques discussed.
Keywords: Air/water interface; Langmuir monolayers; Amphiphiles; Physicochemical methods;

Polymerization in micellar systems is a technique which allows the preparation of ultrafine as well as coarse latex particles. This article presents a review of the current literature in the field of radical polymerization of classical monomers in micellar systems initiated by oil-soluble initiators. Besides a short introduction to some of the kinetic aspects of emulsion polymerization initiated by water-soluble initiators, we mainly focus on the kinetics and the mechanism of radical polymerization in o/w and w/o micellar systems initiated by classical oil-soluble initiators. The initiation of emulsion polymerization of an unsaturated monomer (styrene, butyl acrylate,...) by a water-soluble initiator (ammonium peroxodisulfate) is well understood. It starts in the aqueous phase and the initiating radicals enter the monomer-swollen micelle. The formed oligomeric radicals are surface active and increase the colloidal stability of the disperse system. Besides, the charged initiating radicals might experience the energetic barrier when entering the charged particle surface. The locus of initiation with oil-soluble initiators is more complex. It can partition between the aqueous-phase and the oil-phase. Besides, the surface-active oil-soluble initiator can penetrate into the interfacial layer. The dissolved oil-soluble initiator in the monomer droplet can experience the cage effect. The small fraction of the oil-soluble initiator dissolved in the aqueous phase takes part in the formation of radicals. The oligomeric radicals formed are uncharged and therefore, they do not experience the energetic barrier when entering the polymer particles. We summarize and discuss the experimental data of radical polymerization of monomers initiated by oil-soluble initiators in terms of partitioning an initiator among the different domains of the multiphase system. The inhibitor approach is used to model the formation of radicals and their history during the polymerization. The nature of the interfacial layer and the type of oil-soluble initiator including the surface active ones are related to the kinetic and colloidal parameters. The emulsifier type and reaction conditions in the polymerization are summarized and discussed.
Keywords: Emulsion polymerization; Micelles; Oil-soluble initiator; Mechanism of initiation; Polymerization;